بررسی تغییرات فعالیت آنزیم های آنتی اکسیدانی و رنگیزه‌های فتوسنتزی گیاه دارویی استویا در واکنش به تلقیح قارچ Piriformospora indica تحت تنش شوری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد زراعت، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری - ایران

2 دانشیار گروه زراعت، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری - ایران

3 دانشجوی دکتری زراعت، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، اهواز - ایران

4 استادیار پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری - ایران

چکیده

به منظور بررسی اثر همزیستی قارچ­ Piriformospora indica بر سیستم آنتی­اکسیدانی و رنگیزه­های فتوسنتزی گیاه دارویی استویا تحت تنش شوری، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار در شرایط درون­شیشه­ای انجام شد. عامل­های آزمایش شامل تنش شوری در شش سطح (صفر، 50، 100، 150، 200 و 250 میلی­مولار NaCl) و تیمار همزیستی قارچی در دو سطح عدم تلقیح و تلقیح قارچ P. indica بود.روند تغییرات غلظت پراکسید­هیدروژن، مالون­دی­آلدهید و فعالیت آنزیم کاتالاز در تیمار شاهد به صورت خطی و افزایشی و در تیمار تلقیح با قارچ به صورت دوتکه­ای بود، به­طوری­که در تیمار تلقیح در سطوح پایین تنش این میزان کاهش یافت. روند تغییرات کلروفیلa ، b و کلروفیل a+b در هر دو تیمار عدم تلقیح و تلقیح قارچ به صورت معادله­ی دو­تکه­ای بود. با این وجود، محتوای کاروتنوئید با افزایش تنش شوری در تیمار تلقیح و عدم تلقیح به صورت خطی (به‌ترتیب با شیب 007/0- و 005/0-) کاهش یافت.در مجموع، نتایج نشان داد که قارچ P. indicaدر سطوح پایین شوری احتمالاً از طریق کاهش غلظت پراکسید­هیدروژن (دو درصد تا سطح 124 میلی­مولار شوری) و مالون­دی­آلدهید (17 درصد تا سطح 50 میلی‌مولار شوری) و درنتیجه کاهش فعالیت آنزیم­های آنتی­اکسیدانی و بهبود میزان رنگیزه­های فتوسنتزی سبب افزایش نسبی تحمل به تنش در گیاهان تلقیح شده نسبت به گیاهان شاهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of antioxidant enzymes activity and photosynthetic pigments content changes of stevia medicinal plant inoculated with Piriformospora indica fungi under salt stress

نویسندگان [English]

  • Zahra Noori Akandi 1
  • Hemmatollah Pirdashti 2
  • Yaser Yaghoubian 3
  • Valiollah Ghasemi Omran 4
1 M.Sc. Student of Agronomy, Sari Agricultural Sciences and Natural Resources University, Sari - Iran
2 Associate Professor, Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari – Iran
3 Ph.D. Student of Agronomy, Ramin Agricultural Sciences and Natural Resources University of Khouzestan, Ahvaz - Iran
4 Assistant Professor, Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari - Iran
چکیده [English]

In order to evaluate the effect of Piriformospora indica fungi inoculation on antioxidant systems and photosynthetic pigments of Stevia under salt stress, an experiment was conducted in a factorial based completely randomized design with four replications under in vitro culture conditions. Factors include salinity at six levels (0, 50, 100, 150, 200 and 250 mM of NaCl) and inoculation of mycorrhizae like fungi at two levels (non-inoculated and inoculation with fungi). The results showed that the hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentration and catalase (CAT) activity was increased linearly in control plants while in inoculated plants fitted by a segmented equation. Accordingly, in mild stress the activity of these enzymes were reduced. Chlorophyll a, b and a+b content changed as a segmented model in both inoculated and uninoculated plants. Carotenoid content, however, linearly decreased in both inoculated (slope of -0.007) and uninoculated (slope of -0.005) plants. In conclusion, the results indicated that P. indica, particularly in low levels of salt stress, could reduce hydrogen peroxide (by two percent up to 124 mM of NaCl) and malondialdehyde content (17 percent up to 50 mM of NaCl) which resulted in decreased antioxidant activities and improved photosynthetic pigments and relatively increased tolerance to salt stress  in stevia plants.

کلیدواژه‌ها [English]

  • Antioxidant Enzymes
  • Catalase
  • Chlorophyll
  • endophytic fungi
  • Malondialdehyde

1 . امامی ع (1375) روش­های تجزیه گیاه. جلد 1، نشریه فنی شماره 982، انتشارات سازمان تحقیقات آموزش ترویج کشاورزی، موسسه تحقیقات آب و خاک، البرز. 126 ص.

2 . حاجی‌نیا س، زارع م ج، محمدی گل تپه ا و رجال ف (1390) بررسی سودمندی قارچ اندوفیتPiriformospora indica  و باکتری Azospirillum Sp. در افزایش تحمل گندم رقم سرداری (Triticum aestivum) به تنش شوری. تنش­های محیطی در علوم زراعی. 4(1): 31-21.

3 . قاسم‌نژاد ع و بابایی­زاد و (1390) رشد رویشی و میزان کافئیک اسید برگ کنگر فرنگی (Cynara scolymus L.) تحت تأثیر قارچ مایکوریز Priformospora indica. پژوهش‌های تولید گیاهی. 18(1): 140-133.

4 . کاری­دولت­آبادی ح، محمدی­گل­تپه ا، معینی ا و ورما آ (1391) ارزیابی تأثیر غلظت­های مختلف اکسین و قارچ­های Piriformospora indica و Sebacina vermifera روی نعناء فلفلی (Mentha piperita) و آویشن (Thymus vulgaris) در شرایط درون شیشه­ای. گیاهان دارویی. 2(9): 22-13.

5 . کرمی ع و زارع  م ج (1393) پاسخ فیزیولوژیک و تغذیه­ای گیاه یونجه Medicago sativa. cv. Hamedani)) در تلقیح با قارچ درون­زی Piriformospora indica و باکتری Azospirillum spp. تحت تنش شوری. تولید گیاهان زراعی. 7(1): 129-109.

6 . یعقوبیان ی، پیردشتی ه، محمدی گل­تپه ا، فیضی اصل و و اسفندیاری ع (1391) ارزیابی واکنش گندم دیم (Triticum aestivum L.) رقم آذر 2 به همزیستی با قارچ­های میکوریزای آربوسکولار و شبه میکوریزا در سطوح مختلف تنش خشکی. بوم‌شناسی کشاورزی. 4(1): 73- 63.

 

7 . Abi H (1984) Catalase in vitro. Method of Enzymology. 105: 121-126.

8 . Alexieva V, Sergiev I, Mapelli S and Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment 24: 1337-1344.

9 . Bacilio M, Rodrguez H, Moreno M, Hernandez JP and Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biology and Fertility of Soils. 40: 188-193.

10 . Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel K H, Schäfer P and Schwarczinger I (2008)Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist. 180: 501–510.

11 . Beauchamp C and Fridovich I (1971) Superoxide dismutase: Improved assayand an assay applicable to acrylamide gels. Analytical Biochemistry. 44: 276-287.

12 . Bhattacharjee S and Mukherjee AK (2002) Salt stress induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during early germination. Seed Science and Technology. 30: 279- 287.

13 . Cony MA and Trione SO (1998) Inter and intraspecific variability in Prosopis flexuosaand P. chilensis seed germination under salt and moisture stress. Journal of Arid Environments.40: 307–317.

14 . Ebtsam A, El-Housini MA, Ahmed MS, Hassanein M and Tawfik M (2014) Effect of Salicylic Acid (SA) on Growth and Quality of Stevia (Stevia rebaudiana Bert.) Under Salt Stress. American-Eurasian Journal of Agricultural & Environmental Sciences. 14 (4): 275-281.

15 . Feng G, Li XL, Zhang F S, Tian CY and Tang C (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12: 185-190.

16 . Giri B, Kapoor R and Mukerji K G (2002) VA Mycorrhizal techniques VAM technology in establishment of plants under salinity stress condition. In: Mukerji K G, Manoracheir C and Singh I (Eds.), Techniques in Mycorrhizal Studies. Kluwer, Dordrecht, pp. 313-327.

17 . Hajar EWI, Sulaiman AZB and Sakinah AMM (2014) Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Procedia Environmental Sciences. 20: 386–393.

18 . Jenschke G, Brandes B, Kuhn A J, Schoder WH, Becker JS and Godlbdd DL (2000) The Mycorrhizal fungus Paxillus in volutes magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant and Soil. 220: 243-246.

19 . Kaefer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Advances in Genetics. 19: 33–131.

20 . Koyro HW (2000) Effect of high NaCl-salinity on plant growth, leaf morphology and ion composition in leaf tissues of Beta vulgaris ssp. Maritime. Journal of Applied Botany. 74: 67-73.

21 . Kumar M, Yadav V, Tuteja N and Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology. 155: 780-790.

22 . Lailerd N, Saengirisuwan V, Sloniger JA, Toskulkao C and Henriksen EJ (2004) Effect of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle. Metabolism. 53:101-107.

23 . Madan S, Sayeed A, Singh GN, Kohli K, Singh YKR and Garg M. (2010) Stevia rebaudiana (Bert.) Bertoni-A Review. Indian Journal of Natural Products and Resources. 1(3): 267-287.

24 . Mishra NP, Mishra RK and Singhal GS (1995) Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visual light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiology. 102: 903–910.

25 . Munns R (2002) Comparative physiology of salt and water stress. Plant Cell and Environment. 25: 239-250.

26 . Munns R and Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59:651-681.

27 . Oelmüller R, Sherameti I, Tripathi S and Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis. 19: 1-19.

28 . Pan J, Wang Q and Snell W J (2005) Cilium-generated signaling and ciliarelated disorders. Laboratory Investigation. 85:452–463.

29 . Porcel R and Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany. 55:1743–1750.

30 . Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research. 73:149-156.

31 . Rathore Sh, Singh N and Singh SK (2014) Influence of NaCl on biochemical parameters of two cultivars of Stevia rebaudiana regenerated in vitro. Journal of Stress Physiology and Biochemistry. 10(2): 287-296.

32 . Reisa M, Coelhoa L, Santosa G, Kienlec U and Beltraoa J (2015) Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agricultural Water Management. 152: 217–221.

33 . Ruize-Lozno JM (2003) Arbuscular mycorrhiza symbiosis and alleviation of osmotic stress. New perspective for molecular studies. Mycorrhiza. 13: 309-317.

34 . SAS Institute (2004( SAS/STAT user’s guide. SAS Institute, Cary.

35 . Sheng M, Tang M, Chan H, Yang B, Zhang F and Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18: 287–296.

36 . Singh SP, Singh BB, Maharaji S and Singh M (1994) Effect of kinetin on chlorophyll, nitrogen and proline in Vigna radiata under saline condition. Indian Journal of Plant Physiology. 37: 37-47.

37 . Soltani A, Hammer GL, Torabi B, Robertson MJ and Zeinali E (2006) Modeling chickpea growth and development: phonological development. Field Crops Research. 99: 1-13.

38 . Stewart RRC and Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology. 65:245–248.

39 . Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R and Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought related genes and the plastid-localized CAS protein. Journal of Plant Physiology. 167: 1009-1017.

40 . Tang W and Newton RJ (2005) Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. Plant Physiology and Biochemistry. 43:760–769.

41 . Varma A, Bakshi M, Lou B, Hartmann A and Oelmuller R (2012) Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus. REVIEW. NAAS (National Academy of Agricultural Sciences). Agricultural Research. 1(2):117–131.

42 . Waller F, Achatz B and Baltruschat H (2005) The endophytic fungus Piriformospora indica reprograms Barley to salt-stress tolerance, disease resistance and higher yield. Procedia Environmental Sciences 102: 13386-13391. 

43 . Weisany W, Sohrabi Y, Heidari Gh, Siosemardeh A and Ghassemi-Golezani k (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics Journal. 5: 60-67.

44 . Yaghoubian Y, Mohammadi Goltapeh E, Pirdashti H, Esfandiari E, Feiziasl V, Kari Dolatabadi H, Varma A and Haryani Hassim M (2014) Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress. Agricultural Research. 3(3):239–245.

45 . Yano-Melo AM, Saggin Jr, OJ and Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture, Ecosystems and Environment. 95: 343-348.

46 . Zarea MJ, Chordia P and Varma A (2012a) Piriformospora indica versus Salt Stress. In: Varma A, Kost G and Oelmüller R (Eds.), Sebacinales, Sringer-Verlag, pp. 263-281.

47 . Zarea MJ, Hajinia S, Karimi N, Mohammadi Goltapeh E, Rejali F and Varma A (2012b) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry. 45: 139-146.

48 . Zhu XC, Song FB and Xu HW (2009) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza. 20: 325–332.