بررسی محتوای عناصر معدنی برگ و ریشه گیاهان پیوندی و غیر پیوندی خربزه زرد جلالی تحت تنش کم‌آبی در سیستم آبیاری قطره ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی و اصلاح سبزی گروه علوم باغبانی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت - ایران

2 استاد گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت - ایران

3 استادیار گروه علوم باغبانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج - ایران

4 دانشیارآبیاری و زهکشی، مؤسسه تحقیقات فنی و مهندسی کشاورزی، کرج - ایران

چکیده

جهت بررسی تأثیر پیوند در شرایط تنش کم‌آبیاری، بر محتوای عناصر معدنی برگ و ریشه گیاه، آزمایشی در قالب طرح بلوک های کامل تصادفی با سه تکرار، در مزرعه پژوهشی مؤسسه آموزش عالی امام خمینی (ره) وابسته به وزارت جهاد کشاورزی واقع در شهرک مهندس زراعی (کرج)، در سال زراعی 1393 اجرا گردید. در تحقیق حاضر، از توده بومی خربزه زرد جلالی به عنوان پیوندک و از کدوهای تجاری ارقام ‘شینتوزا’ و ‘فرو’ به عنوان پایه استفاده شد. خربزه های پیوند شده روی کدو همراه با خربزه های خود پیوندی و غیرپیوندی در سه سطح آبیاری 60، 80 و 100 درصد، براساس تخلیه رطوبتی خاک، تحت سیستم آبیاری قطره ای مورد ارزیابی قرار گرفتند. مقایسه میانگین ها نشان داد حداکثر (76/40 تن در هکتار) و حداقل عملکرد کل (16/31 تن در هکتار) به ترتیب به پایه ‘شینتوزا’ و گیاهان خود پیوندی اختصاص داشت. همچنین، سطوح مختلف آبیاری و پایه اثر معنی داری (در سطح احتمال یک درصد) بر محتوای عناصر معدنی برگ و ریشه گیاه داشتند. با افزایش تنش کم آبی، محتوی عنصری برگ و ریشه گیاه کاهش یافت. تفاوت معنی‌داری نیز در سطح احتمال پنج درصد از لحاظ میزان نیتروژن کل برگ بین پایه های هیبریدی ‘فرو’ و ‘شینتوزا’وجود نداشت. مقایسه میانگین ها نشان داد که بیشترین میزان نیتروژن کل برگ (97/2 درصد براساس ماده خشک) و کمترین مقدار آن (23/2 درصد براساس ماده خشک) به ترتیب در گیاهان پیوند شده روی پایه های ‘شینتوزا’و خود پیوندی بود. همچنین، درصد افزایش عناصر معدنی برگ گیاهان شامل نیتروژن، فسفر، پتاسیم و روی در ترکیب پیوندی خربزه زرد جلالی روی پایه ‘شینتوزا’در مقایسه با گیاهان غیر پیوندی به ترتیب 92/26، 15/13، 88/17 و 76/15 درصد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of mineral elements concentration in leaf and root grafted and ungrafted melon (Zard-e -Jalali accession from Inodorus group) under deficit irrigation on drip irrigation system

نویسندگان [English]

  • Dariush Ramezan 1
  • Azam Hassanpour Asil 2
  • Reza Salehi 3
  • Hossein Dehghanisanij 4
1 Ph.D. Student of Physiology and Breeding Vegetable, Department of Horticulture, Faculty of Agriculture Sciences, University of Guilan, Rasht - Iran
2 Professor, Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht - Iran
3 Assistant Professor, Department of Horticulture, Faculty of Agriculture, University of Tehran, Karaj - Iran
4 Associate Professor, Agricultural Engineering Research Institute (AERI), Karaj - Iran
چکیده [English]

The effects of grafting under conditions of deficit irrigation, on content of minerals leaf and root, evalutate in a field experiment under deficit irrigation was conducted with Split plot in a randomized complete block design with three replications, in the research field of higher education institution Imam Khomeini (RA) under the Ministry of Agriculture in Karaj, during 2014. In this study, a landrace melon from Inodorus group (Zard-e-Jalali) as the scion and commercial varieties of Cucurbita rootstocks cv., ‘Shintozwa’and ‘Ferro-RZ’was used as the rootstock. Grafted melons upon commercial varieties of Cucurbita with own-rooted and ungrafted at three irrigation levels 60, 80 and 100 percent based on total available water depletion with drip irrigation system were evaluated. Comparison of means showed that maximum (40.76 ton.ha-1) and minimum (31.16 ton.ha-1) total yield, related to ‘Shintozwa’rootstock and self grafted respectively. The results showed that the irrigation levels and rootstocks had a significant effect (P <0.01) on Leaf and root mineral concentration. Also, content of minerals of leaves and roots decreased with increasing water stress. There was not significant difference in the level of 5 percent, in relation to total nitrogen of leaf between ‘Shintozwa’and ‘Ferro-RZ’rootstocks.The comparison of means showed highest (2.97 percent on a dry matter basis) and the lowest leaf total nitrogen (2.23 percent on a dry basis), respectively, in plants that grafted on ‘Shintozwa’and own rooted. The percent increase in leaves mineral elements, contain nitrogen, phosphorus, potassium and zinc in Zard-e-Jalali grafted upon ‘Shintozwa’ rootstock in compared to ungrafted plants was 26.92, 13.15, 17.88 and 15.76 percent, respectively.

کلیدواژه‌ها [English]

  • Cucurbita rootstocks
  • Ferro-RZ
  • Grafting
  • leaf nitrogen
  • Shintozwa
1 . آشتیانی ن (1388) نشریه خربزه. وزارت جهاد کشاورزی. 25 ص.

2 . امامی ع (1375) روشهای تجزیه گیاه. سازمان تحقیقات، آموزش و ترویج کشاورزی. مؤسسه تحقیقات خاک و آب.

3 . جعفری پ (1389) پیوند سبزیجات به منظور مقابله با تنش‌های محیطی. اولین همایش ملی کشاورزی پایدار و تولید محصول سالم. مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان. 10 ص.

4 . صالحی ر، کاشی، ع و لسانی ح (1383) اثرهای پایه های مختلف کدو بر رشد و عملکرد خیار گلخانه ای رقم سلطان. علوم و فنون باغبانی ایران. 5(1): 66-59.

5 . صالحی ر، کاشی ع، جانگ م ل، بابالار م، دلشاد م، سانگ گ ل و یون چ ه (1389) زنده‌مانی و رشد اولیه گیاهچه های خربزه و طالبی پیوند شده روی پایه های مختلف کدو. علوم باغبانی ایران. 41(1): 9-1.

6 . علیزاده ا (1390) رابطه آب خاک و گیاه. انتشارات دانشگاه امام رضا (ع). 615 ص.

 

7 . Baligar VC, Fageria NK and He ZL (2001) Nutrient use efficiency in plants. Communication in soil Science and Plant Analysis. 32: 921-950.

8 . Brown PH, Zhang Q and Ferguson L (1994) Influence of rootstock on nutrient acquisition by pistachio. Plant Nutrition. 17: 1137-1148.

9 . Castle WS and Krezdorn AH (1975) Effects of citrus rootstocks on root distribution and leaf mineral content of orlando tangelo trees. American Society for Horticultural Science. 100: 1-4.

10 . Chaplin MH and Westwood MN (1980) Nutritional status barlett pear on cydonia and pyrus species rootstock.  American Society for Horticultural Science. 105: 60-63.

11 . Chouka AS and Jebari H (1999) Effect of grafting on watermelon on vegetative and root development, production and fruit quality, Acta Horticulturae. 492: 85-93.

12 . Darryl D (2007) Nutrient management for cucurbits: melons, pumpkin, cucumber and squash. Department of Crop and Soil Sciences, Michigan State University.

13 . Edelstein M, Burger Y, Horev C, Porat A, Meir A and Cohen R (2004) Assessing the effect of genetic and anatomic variation of cucurbita rootstocks on vigour, survival and yield of grafted melons. Horticultural Sciences and Biotechnology. 79: 370-374.

14 . Farooq M, Wahid A, Kobayashi N, Fujita D and Basra SMA (2008) Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development. 10: 1051-1059.

15 . Gonzales PR and Salas ML (1995) Improvement of the growth, grain yield, and nitrogen, phosphorus and potassium nutrition of grain corn through weed control. Plant Nutrition. 18: 3313-3324.

16 . Kato T and Lou H (1989) Effect of rootstock on the yield, mineral nutrition and hormone level in xylem sap in eggplant. Japanese Society for Horticultural. 58: 345-352.

17 . Kim SE and Lee JM (1989) Effect of rootstocks on the growth and mineral contents in cucumber. Inst. Food Development، Kyung Hee Univ. Suwon, Korea. Rrs. Collection. 10: 75-82.

18 . Kirnak H, Cengiz K, Davi H and Sinan G (2001) A long term experiment to study the role of mulches in physiology and macro-nutrition instrawberry grown under water stress. Australian Journal of Agricultural Research. 52: 937-943.

19 . Lee JM and Oda M (2003) Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews. 28: 61-124.

20 . Lee, JM, Kubota C, Tsao SJ, Bie Z, Hoyos Echevarria P, Morra L and Oda M (2010) Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae. 127: 93-105.

21 . Leon V and Kochain LV (1991) Mechanisms of micronutrient uptake and translocation in plant. Pp. 229-285. In: Mortvelt, J. J., F. R. Cox, L. M. Shuman, and R. M. Welch (Eds). Micronutrient in Agriculture. 2nd ed. Soil Science Society of America. Madison, Wl.

22 . Meloni DA, Oliva MA, Ruiz HA and Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Plant Nutrition. 24(3): 599-612.

23 . Nie LC and Chen GL (2000) Study on growth trends and physiological characteristics of grafted watermelon seedlings, Acta Agriculturae Boreali-Occidentalis Sinica. 9: 100-103.

24 . Pulgar G, Villora G, Moreno DA and Romero L (2000) Improving the mineral nutrition in grafted watermelon: Nitrogen metabolism. Plant Biology. 43: 607-609.

25 . Rivero RM, Ruiz JM and Romero L (2003) Role of grafting in horticultural plants under stress conditions. Food, Agriculture and Environment. 1: 70-74.

26 . Rivero RM, Ruiz JM and Romero L (2004) Iron metabolism in tomato and watermelon plants: influence of grafting. Plant Nutrition. 27: 2221-2234.

27 . Romero L and Choi SS (2002) Effects of rootstocks on the mineral elements contents in leaf of oriental cucumber. Plant Physiology. 53: 85-92.

28 . Rouphael Y, Cardarelli M and Colla G (2008) Yield, Mineral Composition, Water Relation, and Water Use Efficiency of Grafted Mini-watermelon Plants under Deficit Irrigation. Horticultural Science. 43(3): 730-736.

29 . Roosta HR and Karimi HR (2012) Effect of alkal-stress on ungrafted and grafted cucumber plants: using two types of local squash as rootstock. Plant Nutrition. 35: 1843-1852.

30 . Ruiz JM, Belakbir A and Romero L (1996) Foliar level of phosphorus as its bioindicators in Cucumis melo grafted plants, A possible effect of rootstock. Plant Physiology. 149: 400-404.

31 . Ruiz JM, Belakbir A and Romero L (1997) Leaf- macronutrient content and yield in grafting melon plants.A model to evaluate the influence of rootstock genotype. Scientia Horticulturae. 71: 227-234.

32 . Ruiz JM and Romero L (1999) Nitrogen efficiency and metabolism in grafted melon plants. Scientia Horticulturae. 81: 113-123.

33. Simonne EH, Joseph DE and Harris CE (1998) Effects of irrigation and nitrogen rates on foliar mineral composition of bell pepper. Plant Nutrition. 21: 2545-2555.

34 . Sun Y, Huang W, Tian Wu XHY, Zhou CT and Ding Q (2002) Study on growth situation, photosynthetic characteristics and nutrient absorption of  grafted cucumber seedlings, Plant Nutrition and Fertilizer Science. 8: 181-185.

35 . Tagliavani M, Bassi D and Marangoni B (1993) Growth and mineral nutrition of pear rootstocks in lime soils. Scientia Horticulturae. 54: 13-22.

36 . Takahashi H, Shiraki M, Uchida Y, Kawagoe H, Okada M, Takamae A, Fukugawa T, Noma H, Tsuda Y, Eto T and Hosoyamada Y (1982) A wilting symptom on the grafted watermelon and its control. Bull. Miyazaki Agricultural Experiment Station. 16: 1-35.

37 . Traka-Mavrona E, Koutsika-Sotiriou M and Pritsa T (2000) Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo). Scientia Horticulturae. 83: 353-362.

38. Wu QS and Zou YN (2009) Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. The Philippine Agricultural Scientist. 92(1): 33-38.

39 . Xu CQ, Li TL and Qi HY (2005a) Effects of grafting on the photosynthetic characteristics, growth situation, and yield of netted muskmelon. China Watermelon and Melon. 2: 1-3.

40 . Xu SL, Chen QL, Li S.H, Zhang LL, Gao JS and Wang HL (2005b) Role of sugar-metabolizing enzymes and GA3, ABA in sugars accumulation in grafted muskmelon fruit. Fruit Science. 22: 514-518.

41 . Yetisir H and Sari N (2004) Effect of hypocotyls morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures. Turkish Journal of Agriculture. 28: 231-237.