Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Razi University, Kermanshah, Iran

2 Associate Professor, Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Razi University, Kermanshah, Iran

3 Assistant Professor of Ecology of Plants, Department of Production Engineering and Plant Genetics, Razi University, Kermanshah, Iran. E-mail address: f.mondani@razi.ac.ir

Abstract

Farmers have traditionally used fire and smoke in various parts of agriculture. Several studies have reported that smoke bioactive components acts as a new family of plant growth regulators. In order to evaluate and explore the potential of smoke-water as a phytohormone on growth characteristics and biological yield of medicinal plants of basil and lemon balm an experiment was conducted as a split plot based on complete randomized block design with three replications. This experiment was conducted in research greenhouse of Razi University in 2017. In this study, eight factors were including four concentrations smoke-water (included 1:5000, 1:1000, 1:500 and 1:100 (v/v)) accompanying with cytokinin, auxin and gibberellic acid (each of them with concentration 50 µM) and control were assigned to the main plots and two harvest stages were assigned to the sub plots. Results indicated that the gibberellic acid significantly increased basil canopy height in comparison to others treatments. While the maximum canopy height in lemon balm was obtained from smoke-water at concentrations of 1:500 (v/v). Foliar-application with cytokinin resulted in the highest leaf area index in both plants compared to control. Eventually the highest biomass yield in basil and lemon balm was obtained from smoke-water at concentrations of 1:100 (v/v) that has increased by 52 and 39 percent, respectively, compared with control. In the current study applying high level of smoke-water foliar (1:100 and 1:500 (v/v)) induced on growth characteristics and biological yield, similar to phytohormone treatments especially cytokinin.

Keywords

Abdelgadir, H. A., Kulkarni, M. G., Aremu, A. O. & Van Staden, J. (2013). Smoke-water and karrikinolide (KAR1) foliar applications promote seedling growth and photosynthetic pigments of the biofuel seed crop Jatropha curcas L.. Journal of Plant Nutrition and Soil Science, 175(5), 743-747. https://doi.org/10.1002/jpln.201200488.
Afroz, S., Mohammad, F., Hayat, S. & Siddiqui, M. H. (2006). Exogenous application of gibberellic acid counteracts the ill effect of sodium chloride in mustard. Turkish Journal of Biology, 29, 233-236.
Alizadeh, O., Haghighi, B. J. & Ordookhani, K. (2010). The effects of exogenous cytokinin application on sink size in bread wheat (Triticum aestivum). African Journal of Agricultural Research, 5, 2893-2898.
        Aremu, O., Plackova, L., Novak, O., Strik, W. A., Dolezal, K. & Van Staden, J. (2016). Cytokinin profiles in ex vitro acclimatized Eucomis autumnalis plants pre-treated with smoke-derived karrikinolide. Plant Cell Reports, 35, 227-238. doi: 10.1007/s00299-015-1881-y.
Ashraf, M. & Harris, P. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51, 163-190. https://doi.org/10.1007/s11099-013-0021-
Ashraf, M., Athar, H., Harris, P. & Kwon, T. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45-110. DOI: 10.1016/S0065-2113(07)00002-8Aslam, M. M., Jamil, M., Khatoon, A., El-Hendawy, S. E., Al-Suhaibani, N. A., Shakir, S. K., Malook, I. & Rehman, S. (2015). Does weeds-derived smoke improve plant growth of wheat? Journal of Bio-Molecular Sciences, 3(2), 86-96.
Chen, J. G., Cheng, S. H., Cao, W. & Zhou, X. (1998). Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. Journal of Plant Nutrition, 21, 87-97. https://doi.org/10.1080/01904169809365385.
Chiwocha, S. D., Dixon, K. W., Flematti, G. R., Ghisalberti, E. L., Merritt, D. J., Nelson, D. C., Riseborough, J. M., Smith, S. M. & Stevens, J. C. (2009). Karrikins: a new family of plant growth regulators in smoke. Plant Science, 177, 252-256.  DOI:10.1016/j.plantsci.2009.06.007.
Chumpookam, J., Lin, H., Shiesh, C. & Ku, K. (2012). Effect of smoke-water on seed germination and resistance to Rhizoctonia Solani inciting papaya damping-off. Hoticulture NCHU, 34(1), 13-29. https://doi.org/10.21273/HORTSCI.47.10.1453.
Dixon, K., Merritt, D., Flematti, G. & Ghisalberti, E. (2009). Karrikinolide–a phytoreactive compound derived from smoke with applications in horticulture, Ecological Restoration and Agriculture. Proceedings of the VI International Symposium on New Floricultural Crops, 813, 155-170. DOI: 10.17660/ActaHortic.2009.813.20.
Flematti, G. R., Waters, M. T., Scaffidi, A., Merritt, D. J., Ghisalberti, E. L. Dixon, K. W. & Smith, S. M. (2013). Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Molecular Plant, 6(1), 29-37. https://doi.org/10.1093/mp/sss132.
Garnica, M., Houdusse, F., Zamarreño, A. M. & Garcia-Mina, J. M. (2010). The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. Journal of Plant Physiology, 167, 1264-1272. doi: 10.1016/j.jplph.2010.04.013.
Govindaraj, M., Masilamani, P., Alex Albert, V., and Bhaskaran, M. (2016). Plant derived smoke stimulation for seed germination and enhancement of crop growth: A review. Agricultural Reviews, 37(2), 78-100. DOI: 10.18805/ar.v37i2.10735.
Hayat, S. & Ahmad, A. (2003). Soaking seeds of Lens culinaris with 28‐homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Annals of Applied Biology, 143, 121-124. https://doi.org/10.1111/j.1744-7348.2003.tb00276.x.
Hayat, S., Ahmad, A., Mobin, M., Fariduddin, Q. & Azam, Z. (2001). Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica, 39, 111-114. https://doi.org/10.1023/A:1012456205819.
Jain, N., Stirk, W. A. & Van Staden, J. (2008). Cytokinin-and auxin-like activity of a butenolide isolated from plant-derived smoke. South African Journal of Botany, 74, 327-331. https://doi.org/10.1016/j.sajb.2007.10.008.
Jamil, M., Kanwal, M., Aslam, M. M., Kahn, S. U., Malook, I., Tu, J. & Rehman, S. U. (2014). Effect of plant-derived smoke priming on physiological and biochemical characteristics of rice under salt stress condition. Australian Journal of Crop Science, 8(2), 159-170.
Jana, S., Sivanesan, I. & Jeong, B. R. (2013). Effect of cytokinins on in vitro multiplication of Sophora tonkinensis. Asian Pacific Journal of Tropical Biomedicine, 3, 549-553. https://doi.org/10.1016/S2221-1691(13)60111-2Kahn, P., Rehman, S., Jamil, M., Irfan, S., Waheed, M. A., Aslam, M. M., Kanwal, M. & Shakir, S. K. (2014). Alleviation of Boron stress through plant derived smoke extracts in Sorghum bicolor. Journal of Stress Physiology and Biochemistry, 10(3), 153-165.
Khan, N. (2003). Comparative effect of modes of gibberellic acid application on photosynthetic biomass distribution and productivity of rapeseed-mustard. Physiology And Molecular Biology Of Plants, 9, 141-145.
Kulkarni, M. G., Ascough, G. D. & Van Staden, J. (2007). Effects of foliar applications of smoke-water and a smoke-isolated butenolide on seedling growth of okra and tomato. Horticultural Science 42, 179-182. https://doi.org/10.21273/HORTSCI.42.1.179.
Kulkarni, M. G., Ascough, G. D. & Van Staden, J. (2008). Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. Horticultural Technology, 18, 449-454. https://doi.org/10.21273/HORTTECH.18.3.449
Leite, V. M., Rosolem, C. A. & Rodrigues, J. D. (2003). Gibberellin and cytokinin effects on soybean growth. Scientia Agricola, 60, 537-541. http://dx.doi.org/10.1590/S0103-90162003000300019.
Light, M. E., Burger, B. V., Staerk, D., Kohout, L. & Van Staden J. (2010). Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination. Journal of Natural Products, 73, 267-269. https://doi.org/10.1021/np900630w
Light, M. E., Burger, B. V. & Van Staden, J. (2005). Formation of a seed germination promoter from carbohydrates and amino acids. Journal of Agricultural and Food Chemistry, 53, 5936-5942. https://doi.org/10.1021/jf050710u.
Mercier, H., Kerbauy, G., Sotta, B. & Miginiac, E. (1997). Effects of NO3, NH4+ and urea nutrition on endogenous levels of IAA and four cytokinins in two epiphytic bromeliads. Plant, Cell and Environment, 20, 387-392. https://doi.org/10.1046/j.1365-3040.1997.d01-72.x.
Nair, J., Pošta, M., Papenfus, H., Munro, O., Beier, P. & Van Staden, J. (2014). Synthesis, X-ray structure determination and germination studies on some smoke-derived karrikins. South African Journal of Botany, 91, 53-57. https://doi.org/10.1016/j.sajb.2013.12.003.
Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107-130. DOI: 10.1146/annurev-arplant-042811-105545.
Nordström, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Åstot, C., Dolezal, K. & Sandberg, G. (2004). Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proceedings of the National Academy of Sciences, 101, 8039-8044. DOI: 10.1073/pnas.0402504101.
Polanská, L., Vičánková, A., Nováková, M Malbeck, J., Dobrev, P. I., Brzobohatý, B., Vaňková, R. & Macháčková, I. (2006). Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. Journal of Experimental Botany, 58, 637-649. DOI: 10.1093/jxb/erl235.
Rahayu, Y., Walch-Liu, P., Neumann, G., Wirén, N. V., Römheld, V. & Bangerth, F. (2001). Effects of long-term and short-term supply of NO3 or NH 4+ on Cytokinin levels and leaf expansion rate in tomato (Lycopersicon esculentum L. cv. Moneymaker). Journal of Plant Nutrition, 134-135. https://doi.org/10.1007/0-306-47624-X_64.
Rahayu, Y. S., Walch-Liu, P., Neumann, G., Römheld, V., Von Wirén, N. & Bangerth, F. (2005). Root-derived cytokinins as long-distance signals for NO3-induced stimulation of leaf growth. Journal of Experimental Botany, 56, 1143-1152. https://doi.org/10.1093/jxb/eri107.
Schwachtje, J. & Baldwin, I. T. (2004). Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Science Research, 14, 51-60. DOI: https://doi.org/10.1079/SSR2003154.
Sosnowski, J., Malinowska, E., Jankowski, K., Król, J. & Redzik, P. (2017). An estimation of the effects of synthetic auxin and cytokinin and the time of their application on some morphological and physiological characteristics of Medicago x varia T. Martyn. Saudi Journal of Biological Sciences, 26(1), 66-73. https://doi.org/10.1016/j.sjbs.2016.12.023.
Taiz, L. & Zeiger, E. (2012). Plant Physiology. Sunderland, Massachusetts U.S.A. Pp. 461-517.
Takei, K., Ueda, N., Aok,i. K., Kuromori, T., Hirayama, T., Shinozaki, K., Yamaya, T. & Sakakibara, H. (2004). AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis.  Plant and Cell Physiology, 45, 1053-1062. DOI:10.1093/pcp/pch119.
Van Staden, J., Jäger, A. K., Light, M. E., Burger, B. V., Brown, N. C. & Thomas, T. H. (2004). Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany, 70, 654-659. https://doi.org/10.1016/S0254-6299(15)30206-4.
Walch‐Liu, P., Neumann, G., Bangerth, F. & Engels, C. (2000). Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany, 51, 227-237. doi.org/10.1093/jexbot/51.343.227
Wang, Y., Zhao, J., Lu, W. & Deng, D. (2017). Gibberellin in plant height control: old player, new story. Plant Cell Reports, 36, 391-398. doi: 10.1007/s00299-017-2104-5.
Zhang, Y., Zhu, Y., Peng, Y., Yan, D., Li, Q., Wang, J., Wang, L. & He, Z. (2008). Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Research, 18(3), 412-421. DOI: 10.1038/cr.2008.28.
Zhou, J., Fang, L., Wang, X., Guo, L. & Huang, L. (2013). Effects of smoke-water on photosynthetic characteristics of Isatis indigotica seedlings. Sustainable Agriculture Research, 2(2), 24-28. DOI: 10.5539/sar.v2n2p24.