Document Type : Research Paper

Authors

1 Ph.D. Student, Department of Agronomy, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran

2 Associate Professor, Department of Agronomy, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.

3 Assistant Professor, Department of Plant Protection, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran

Abstract

In order to investigate effects of different fungicide spraying treatments on soybean seed quality, a split plot experiment was conducted in a randomized complete block design with three replications in research field of Gorgan University of Agricultural Science and Natural Resources in 2016. Two spring (May 28) and summer (July 10) planting dates performed at main plots and fungicides spraying including benomyl, mancozeb, propiconazole, methyl thiophanate, carbendazim and control in two stages R3 and R6 were done in sub plots. Germination, accelerated aging, electrical conductivity, and seed health tests were used to evaluate the quality of seeds. Two fungi Alternaria sp. and Fusarium sp. spread were observed in seed lots, but lower prevalence for Fusarium sp.. Therefore, seed health was most affected by Alternaria sp.. The percentage of healthy seeds in spring sowing date was 21.48% higher than summer sowing date. All used fungicides (especially propiconazole and methyl thiophanate) significantly increased the health, germination, and vigor of seeds compared to control. The produced seeds in summer planting despite of more fungal infection, had higher seed germination and vigor than seeds of spring crops, because of exposing the seed development stages (R5-R8) to low temperatures. In the fact that, air temperature during seed development stages was more important in determining seed germination and vigor compared to pathogens. Therefore, in order to achieve high seed quality, it is appropriate to use summer planting with the utility of suitable fungicides such as propiconazole and methyl thiophanate at R3 and R6 growth stages.

Keywords

Balducchi, A. J., & McGee, D. C. (1987). Environmental factors influencing infection of Soybean seeds by Phomopsis and Diaporthe species during seed maturation. Plant Disease, 71(3), 209-212. DOI: 10.1094/PD-71-0209.
Carvalho, B. O., Oliveira, J. A., Carvalho, E. R., de Andrade, V., Ferreira, T. F., & Reis, L. V. (2013). Action of defense activator and foliar fungicide on the control of Asiatic rust and on yield and quality of soybean seeds. Journal of Seed Science, 35(2), 198-206. DOI: 10.1590/S2317-15372013000200009. 
Colbach, N., & Durr, C. (2003). Effects of seed production and storage conditions on blackgrass (Alopecurus myosuroides) germination and shoot elongation. Weed Science, 51(5), 708-717.  DOI: 10.1614/P2002-051.
Delaney, M., ArchMiller, A. A., Delaney, D. P., Wilson, A. E., & Sikora, E. J. (2018). Effectiveness of fungicide on soybean rust in the Southeastern United States: A meta-analysis. Sustainability, 10(6), 1784.  DOI: 10.3390/su10061784.
Dornbos, D. L., & Mullen, R.E. (1991). Influence of stress during soybean seed fill on seed weight, germination and seedling growth rate. Canadian Journal of Plant Science, 35(2), 373-383.  DOI: 10.4141/cjps91-052.
Egli, D. B., Tekrony, D. M., Heitholt, J. J., & Rupe. J. (2005). Air temperature during seed filling and soybean seed germination and vigor. Crop Science, 45(4), 1329-1335. DOI: 10.2135/cropsci2004.0029.
Fehr, W. R., & Caviness, C.E. (1977). Stages of soybean development. Iowa State University. Agricultural and Home Economics Experiment Station. Special Report. 80, 1-11.
Ghaderi-Far, F., & Soltani, A. 2010. Seed control and certification. Jihad of Mashhad University Press. 200 p. (In Persian).
Ghaderi-Far, F., Soltani, A., & Sadeghipour, H. R. (2011). Changes in seed quality during seed development and maturation in medicinal pumpkin (Cucurbita pepo subsp. Pepo. Convar. Pepo var. styriaca Greb). Journal of Herbs, Spices and Medicinal Plants,17(3), 249-257. DOI: 10.1080/10496475.2011.606082.
Ghaderi-Far, F., Soltani, A., & Sadeghipour, H. R. 2009. Evaluation of nonlinear regeression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. Pepo. Convar. Pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. Journal of Plant Production, 16(4), 1-19. (In Persian).
Gibson, L. R., & Mullen, R. E. (1996). Soybean seed quality reductions by high day and night temperature. Crop Science, 36(6), 1615–1619. DOI: 10.2135/cropsci1996.0011183X003600060034x.
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J.,Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2973-2989. DOI: 10.1098/rstb.2010.0158.
Gorzin, M., Ghaderi-Far, F., Razavi, S. E., & Zeinali, E. 2014. Identification and infection percentage determination of soybean [Glycine max (L.) Merr.] by seed born fungi in Golestan province and its relationship with quality of seeds produced in this region. Iranian Journal of Seed Science and Research, 1(2), 13-26. (In Persian).
Gorzin, M., Ghaderi-Far, F., Monyan Ardestani, M., Zeinali, E., & Razavi, S. E. 2015a. The role of planting date, foliar application of benomyl fungicide and potassium silicate in increasing seed quality of soybean cv. Williams. Journalof Crops Improvement,17(1), 139-153. (In Persian).
Gorzin, M., Ghaderi-Far, F., Zeinali, E., & Razavi, S. E. 2015b. Evaluation of seed germination and seed vigor of different soybean (Glycine max (L.) Merr.) cultivars under different planting dates in Gorgan. Iranian Journal of Field Crops Research, 13(3), 611-622. (In Persian).
Gorzin, M., Ghaderi-Far, F., Razavi, S. E., & Zeinali, E. 2017. The changes of soybean seed health and incidence of seed born fungi in response to planting date and maturity group of cultivars. Plant Protection (Scientific Journal of Agriculture), 39(4), 13-26. (In Persian).
Hampton, J. G., & TeKrony, D. M. (1995). Handbook of vigor test methods. The International Seed Testing Association, Zurich, 3rd Edition, 117 p.
Hampton, J. G., Boelt, B., Rolston, M. P., & Chastain, T. G. (2013). Effects of elevated CO2 and temperature on seed quality. Journal of Agricultural Science, 151(2), 154-162. DOI: 10.1017/S0021859612000263.
Henry, R. S., Johnson, W. G., & Wise, K. A. (2011). The impact of a fungicide and an insecticide on soybean growth, yield, and profitability. Crop Protection, 30(12), 1629-1634.  DOI: 10.1016/j.cropro.2011.08.014.
Hershman, D. E., & Vincelli, P. (2011). Foliar fungicide use in corn and soybeans. Plant Pathology Fact Sheet, University of Kentucky, College of Agriculture, Food and Environment, 9p.
Holshouser, D., Kevin, D., & Mehl, H. (2013). Double-crop soybean response to foliar fungicides. Virginia Agricultural Experiment Station, 24 p.
Hong, T. D., Ellis, R. H., & Moore, D. (1997). Development of a model to predict the effect of temperature and moisture on fungal spore longevity. Annals of Botany, 79(2), 121-128.  DOI: 10.1006/anbo.1996.0316.
Jardine, D. J. (1991). The lowa soybean pod test for predicting Phomopsis seed decay in Kansas. Plant Disease, 75(5), 523-525. DOI: 10.1094/PD-75-0523.
Kulik, M. M., & Sinclair, J. B. (1999). Phomposis seed decay.  In G. L. Hartman., J. B. Sinclair., & J.C. Rupe (Ed), Compendium of soybean diseases (4th ed., pp. 31-32). American Phytopathological Society Press. St. Paul, MN, 74 p.
Li, S., Hartman, G. L., & Boykin, D. L. (2010). Aggressiveness of Phomopsis longicolla and other Phomopsis spp. on soybean. Plant Disease, 94(8),1035-1040.  DOI: 10.1094/PDIS-94-8-1035.
Li, S., Smith, J. R., & Nelson, R. L. (2011). Resistance to Phomopsis seed decay identified in maturity group V soybean plant introductions. Crop Science, 51(6), 2681-2688. DOI: 10.2135/cropsci2011.03.0162.
Mengistu, A., Castlebury, L., Smith, R., Ray, J., & Bellaloui, N. (2009). Seasonal progress of Phomopsis longicolla infection on soybean plant parts and its relationship to seed quality. Plant Disease, 93(10),1009-1018.  DOI: 10.1094/PDIS-93-10-1009.
Rupe, J. C. (1990). Effect of temperature on the rate of infection of soybean seedling by Phomopsis longicolla. Canadian Journal of Plant Pathology, 12(1), 43-47.  DOI: 10.1080/07060669009501041.
Shinohara, T., Hampton, J. G., & Hill, M. J. (2006). Effects of the field environment before and after seed physiological maturity on hollow heart occurrence in garden pea (Pisum sativum). New Zealand Journal of Crop and Horticultural Science, 34(3), 247-255.  DOI: 10.1080/01140671.2006.9514414.
Smith, D., Chapman, S., & Jensen, B. (2014). Wisconsin field crops pathology fungicide tests summary. University of Wisconsin Extension, 18 p.
Smith, D., Chapman, S., & Mueller, B. (2016). Wisconsin Field Crops Pathology Fungicide Tests Summary. University of Wisconsin Extension. 20 p.
Soltani, A., Zeinali, E., Galeshi, S., & Latifi, N. (2001). Genetic variation for and interrelationships among seed vigor traits in wheat from the Caspian Sea Coast of Iran. Seed Science and Technology, 29(3), 653-662.
Soto-Arias, J. P., & Munkvold, G. P. (2011). Impacts of foliar fungicides on infection of soybean by Phomopsis spp. in Iowa, USA. Crop protection, 30(5), 577-580.  DOI: 10.1016/j.cropro.2010.11.018.
Spears, J. F., TeKrony, D. M., & Egli, D. B. (1997). Temperature during seed filling and soybean seed germination and vigour. Seed Science and Technology, 25(2), 233-244.
TeKrony, D. M., & Egli, D. B. (1985). Effect of Benomyl application on soybean seedborne fungi, seed germination, and yield. Plant Disease, 69(9), 763-765. DOI: 10.1094/PD-69-763.
TeKrony, D. M., Egli, D. B., Stuckey, R. E & Balles, J. (1983). Relationship between weather and soybean seed infection by Phomopsis sp. Phytopathology, 73(6), 914-918. DOI: 10.1094/Phyto-73-914.
Wrather, J. A., Shannon, J. G., Stevens, W. E., Sleper, D. A., & Arelli, A. P. (2004). Soybean cultivar and foliar fungicide effects on Phomopsis sp. seed infection. Plant Disease, 88(7), 721-723. DOI: 10.1094/PDIS.2004.88.7.721.
Zambiazzi, E. V., Adriano Teodoro Bruzi,  A. T., de Carvalho, M. L. M., Guilherme, S. R., Zuffo, A. M., Mendes, A. E. S., de Sales, A. P., de Oliveira Ribeiro, F., Bianchi, M. C., Soares, L.O., & Borges, I. M. M. (2018). Management of foliar application of fungicides to enhance physiological and sanitary quality of soybean seeds. Australian Journal of Crop Science, 12(12), 1902-1910. DOI: 10.21475/ajcs.18.12.12.p1219.
Zhang, A. W., Hartman, G.L., Curio-Penny, B., Pedersen, W. L., & Becker, K. B. (1999). Molecular detection of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology, 89(9), 796-804. DOI: 10.1094/PHYTO.1999.89.9.796.