Document Type : Research Paper



Identification of cultivars with tolerance to water stress has important for crop production in arid and semi-arid areas. In order to, a factorial experiment was conducted based on completely randomized design with two factors of 20 genotypes of canola and 5 water potentials of 0, -0.15, -0.3, -0.5, and -0.8 MPa in 4 replications in Seed Technology Laboratory of College of Aburaihan, during 2015-16. Seed germination of different genotypes was recorded twice in a day for each water potential at 20oC. Thereafter, hydrotime model was fitted to time course germination. Results indicated that Karaj 1 and Opera had the lowest value of base water potential with -1.23 and -1.2 (MPa) and they were the most tolerant genotypes to drought. Genotypes of 203 and Likord had the highest value of base water potential with -0.27 and -0.22 and the most sensitive genotypes to water stress. The lowest hydrotime constant belonged to Zarfam and Talaye with 22.67 and 23.73 MPa-hours and the highest hydrotime constant belonged to 389 and Opera with 50.93 and 48.07 MPa-hours. The base water potential with 95% had the highest broad sense heritability. Using this information it is possible to identify genotypes with higher efficiency and more tolerate to water stress in future breeding programs to breed new genotypes with tolerance to water stress.


اکرم‏قادری ف.، سلطانی ا.، سلطانی ا. و میری ع.ا. (1387) تأثیر پرایمینگ بر واکنش جوانه‏زنی به دما در پنبه. مجلة علوم کشاورزی و منابع طبیعی. 15(3): 44-51. 
سلطانی ا. و لطیفی ن. (1392) ارزیابی قدرت اولیة گیاهچه در ارقام کانولا (.Brassica napus L). مجلة علوم و تکنولوژی بذر. 3(1): 37-48.  
فرشادفر ع. (1378) کاربرد ژنتیک کمی در اصلاح نباتات. انتشارات طاق بستان، 404 صفحه. 
قادری‏فر ف. و سلطانی ا. (1394) ارزیابی جوانه‏‏زنی ارقام کنجد در واکنش به دما و تعیین دماهای مهم و مقاومت به دما. مجلة علوم گیاهان زراعی ایران. 46(3): 473-483. 
کوچکی ع.، راشد محصل م.، نصیری و صدرآبادی ر. (١٣٧٠) مبانی فیزیولوژیکی رشد و نمو گیاهان زراعی، انتشارات آستان قدس رضوی، ٤٠٤ صفحه.
Allard R.W. (1999) Principles of plant breeding. 2nd Ed. New York: John Wiley and sons. 264 p.
Bradford K.J. (1990( A water relation analysis of seed germination rates. Plant Physiology. 94(2): 840-849.
Bradford K.J. and Somasco O.A. (1994) Water relations of lettuce seed thermoinhibition I Priming and endosperm effects on base water potential. Seed Science Research. 4(1): 1–10.
Bradford K.J. and Still D.W. (2004) Application of hydrotime analysis in seed testing. Seed Technology. 26(1): 74-85.
Cardoso V.J.M. and Bianconi A. (2013) Hydrotime model can describe the response of common bean (Phaseolus vulgaris L.) seeds to temperature and reduced water potential. Biological Sciences. 35(2): 255-261.
Dahal P. and Bradford K.J. (1990) Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. Germination at reduced water potential. Journal of Experimental Botany. 41(11): 1441–1453.
De Figueiredo E., Albuquerque M.C. and De Carvalho N.M. (2003) Effect of the type of environmental stress on the emergence of sunflower (Helianthus annus L.), soybean (Glycine max L.) and maize (Zea mays L.) seeds with different levels of vigor. Seed Science and Technology. 31(2): 465-479.
Falconer D.S. (1989) Introduction to quantitative genetics. 3rd Ed. Longman, ‌ New York. 415 p.
Farzaneh S. and Soltani E. (2011) Relationships between Hydrotime parameters and seed vigor in sugar beet. Seed Science and Biotechnology. 5(1): 7-10.
 Gummerson R.J. (1986) The effect of constant temperatures and osmotic potentials on the germination of sugar beet.  Journal of Experimental Botany. 37(6): 729–741.
Jacobsen S.E. and Bach A.P. (1998) The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Wild). Seed Science and Technology. 26(2):515-523.
Livingston N.J. and De Jong E. (1990) Matric and osmotic potential effects on seedling emergence at different temperature. Agronomy Journal. 82(5): 995-998.
Michel B.E. and Kaufmann M.R. (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51(5): 914-916.
Mohammadi S.A. and Prasanna B.M. (2003) Analysis of genetic diversity in crop plants- Salient statistical tools and considerations. Crop Science. 43: 1235-1248.
Siahposh M.R. EmamY. and Saeidi A. (2003) Genotypic variation heritability genotypic and phenotypic correlation coefficients of grain yield, its components and some morpho- physiological characters in bread wheat (Triticum-aestivum L.). Iranian Journal of Crop Science. 5(1): 86-101.
Soltani E. and Farzaneh S. (2014) Hydrotime analysis for determination of seed vigour in cotton. Seed Science and Technology. 42(2): 260-273.
Sunday O.F., Ayodele A.M., Babatunde K.O. and Oluwole A.M. (2007) Genotypic and phenotypic variability for seed vigour traits and seed yield in West African rice (Oryza sativa L.) Genotypes. Journal of American Science. 3(1): 34-41.
Windauer L., Altuna A. and Benech-Arnold R. (2007) Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops and Products. 25(1):70-74.
Wricke H. and Weber W.E. (1986) Quantitative genetics and selection in plant breeding. Berlin Walter. De Gruyter. 420 p.