Authors

Abstract

To study the phenotypic and genotypic diversity of some important agronomic traits associated with yield in white beans, 30 genotypes of white bean were evaluated using a randomized complete block design with four replications in two environments under water stress and non stress conditions. Analysis of variance for most of the traits showed significant differences among genotypes, indicating the existence of genetic variation among varieties. Most traits were affected by the stress. The results indicated that grain yield, weight of pod, biological yield, number of grain per plant and number of pod per plant in white bean reduced under water stress condition whereas, evaluation of drought resistance in bean genotypes, showed that stress tolerance index (STI) and mean productivity (MP) and geometric mean productivity (GMP) were the best criteria for recognizing tolerant genotypes (21 and 30). Under both condition weight of pod was highly correlated with the grain yield. Factor analysis was performed for genotypes both under water stress and non stress conditions and under both conditions three common factor have been extracted, which described most of traits variations. Stepwise regression analysis showed that in water stress conditions, pod weight, harvest index, 100 grain weight and number of grain per plant and in non stress conditions pod weight, harvest index and biological yield have the highest effect on grain yield. Result of path analysis showed that the highest direct positive effect was related to weight of pod under both condition. In classification of genotypes based on phenotypic characteristics, using cluster analysis (UPGMA), all genotypes classification into three separate groups under non stress and stress condition.

Keywords

1 . امینی ا (1376) مطالعه تنوع ژنتیکی و جغرافیایی رقم 576 لوبیا به روش آنالیز آماری چند واریانس. پایان­نامه کارشناسی ارشد. پردیس کشاورزی و منابع طبیعی، دانشگاه تهران. کرج.
2 . بیضایی ا (1379) ارزیابی صفات کمی و کیفی و روابط آن با عملکرد بذر در گندم و ژنوتیپ­های لوبیا قرمز و پینتو. پایان­­نامه کارشناسی ارشد. دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد کرج.
3 . حبیبی ج ح و قنادها م ر (1385) مطالعه عملکرد بذر و بعضی ویژگی­های مرتبط در لوبیا پینتو تحت آبیاری کاهش یافته. پژوهش و سازندگی 74: 46-34.
4 . حبیبی ج ح، قنادها م ر، سوهانی و دوری (1384) ارزیابی رابطه عملکرد بذر با صفات مهم زراعی لوبیا قرمز به روش­های مختلف تجزیه تحت شرایط تنش آب. علوم کشاورزی و منابع طبیعی. 13(3).
5 . سمیع­زاده ح (1374) مطالعه تنوع فنوتیپی و ژنوتیپی صفات کمی و همبستگی آن با عملکرد نخود سفید. پایان­نامه کارشناسی ارشد. دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد کرج.
6 . مجنون حسینی ن (1374) لگوم­ها در ایران. انتشارات جهاد دانشگاهی دانشگاه تهران.
7 . مرجانی ا (1373) مطالعه تنوع فنوتیپی و ژنوتیپی صفات کمی لوبیا و همبستگی آن با عملکرد با روش آنالیز پث. پایان­نامه کارشناسی ارشد. دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد کرج.
 
8 . Abebe A, Brick MA and Kirkby (1998) Comparison of selection indices to indentify productive dry bean lines under diverse environmental conditions. Field Crops Research. 58(1): 15-23.
9 . Acosta DK, Shibata J, Acosta-Gallegos and Alberto J (1997) Yield and its components in bean under drought conditions. Agricultura-Tecnica – en Mexico. CAB Abstract. 23(2): 139-150.
10 . Adams MW(1982) Plant architecture and yield breeding. Iowa State J. Res. 56(3): 225-254.
11 . Aquaah G, Adams MW and Kelly JD (1992) A factor analysis of plant variables associated with architecture and seed size in dry bean. Euphytica 60: 171-177.
12 . Bennett JP, Adams MW and Burga C (1997) Pod yield component variation and inter correlation in Phaseolus vulgaris as affected by planting denseity. Crop Sci. 17:73-75.
13 . Bramel PL, Hinz PN, Green DE and Shibles RM (1984)
Uses of principal factor analysis in the study of three stem termination types of soybean. Euphytica. 33: 387-400.
14 . Broughton WJG, Hernández M, Blair S, Beebe P, Gepts and Vanderleyden J (2003) Beans (Phaseolus spp) model food legume. Plant Soil 252: 55-128.
15 . Carvalho MHCD, Laffray D and Louget P (1998) Comparision of the physiological responses of phaseolus vulgaris and vigna unguiculata cultivars when submitted to drought conditions. Environmental and Experimental Botany. 40(3): 197-207.
16 . Fernandez GC (1992) Effective Selection criteria for assessing plant stress tolerance, In Proceeding of an sympo, Taiwan, 13-16 Aug 1992, by C. G. Kuo, AVRDC.
17 . Fisher RA and Maurer R (1978) Drought resistance in spring wheat cultivar, I, grain yield responses. Aust. J. Agric. Res. 29: 897-912.
18 . Johnson RA and Wichern DW (1982) Applied multivariate statistical analysis, Prentice Hall International, Inc. , New York.
19 . Kumar A, Omae H, Egawa Y, Kashiwaba K and Shono M (2006) Adaptation to Heat and Drought Stresses in Snap Bean (Phaseolus vulgaris) during the Reproductive Stage of Development, JARQ 40(3): 213-216.
20 . Kumar A, Omae H, Egawa Y, Kashiwaba K and Shono M (2006) Influence of Irrigation Level, growth stages and cultivars on leaf gas exchange characteristics in Snap Bean (Phaseolus vulgaris) under subtropical environment, JARQ 41(3): 201-206.
21 . Mouhouche B, Ruget F and Delecolle R (1998) Effects of water stress applied at different phenological phases on yield components of dwarf bean. Agronomie. 18(3): 197-207.
22 . Poehlman JM (1983) Breeding Field Crops, AVI, New York.
23 . Ramirez-Vallejo P and Kelly JD (1998) Traits related to drought resistance in common bean. Euphytica. 99: 127-136.
24 . Rosielle AA and Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 21: 943-946.
25 . Schneder KA, Rosales-Serna R, IbarraœPerez F, Cazaresœ Enriquez B, Acostagallegos J, Rmirez-vallejo P, Wassimi N and Kelly JD (1997) Improving common bean performance under drought stress. Crop Sci. 37: 43-50.