حجارپور، امیر؛ سلطانی، افشین و ترابی، بنیامین (1394). استفاده از آنالیز خط مرزی در مطالعات خلأ عملکرد (مطالعه موردی گندم در گرگان). نشریه تولید گیاهان زراعی، 8(4)، 201-183.
خلیلی اقدم، نبی؛ مساعدی، ابوالفضل؛ سلطانی، افشین و کامکار، بهنام (1391). ارزیابی توانایی مدل LARS-WG در پیشبینی برخی از پارامترهای جوی سنندج. مجله پژوهشهای حفاظت آب و خاک، 19(4)، 102-85.
Abassi, F., Malbusi, S., Babaeian, I., Asmari, M., & Borhani, R. (2015). Climate change prediction of south Khorasan province during 2010-2039 by using statistical downscaling of ECHO-G data. Journal of Water and Soil, 24(2), 218-233. https://doi.org/10.22067/jsw.v0i0.3218.
Ahmed, M., Akram, M. N., Asim, M., Aslam, M., Hassan, F., Higgins, S., Stockle, C., & Hoogenboom, G. (2016). Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture, 123, 381-401. https://doi.org/10.1016/j.compag.2016.03.015.
Asseng, S. Ewert, F., & Martre, P. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143-147. https://doi.org/10.1038/nclimate2470.
Devkota, K.P., Hoogenbom, G., Boote, K.J., Singh, U., Lamers, J.P.A., Devkota, M., & Velk, P.L.G. (2015). Simulating the impact of water saving irrigation and conservation agriculture practices for rice – wheat systems in the irrigated semi-arid drylands of Central Asia. Agricultural and Forest Meteorology, 214, 266-280. https://doi.org/10.1016/j.agrformet.2015.08.264.
Eyshi Rezaie, E., & Bannayan, M. (2012). Rainfed wheat yields under climate change in northeastern Iran. Meteorological Application, 19, 346-354. https://doi.org/10.1002/met.268.
FAOSTAT. (2020). Food and Agricultural Organization of the United Nations (FAO), FAOStatistical Database, from http://faostat.fao.org.
Gohari, A., Eslamian, S., Abedi-Koupaei, J., Massah Bavani, A., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Science of the Total Environmental, 442, 405-419.
Hajjarpoor, A. Soltani, A., & Torabim, B. (2016). Using boundary Line analysis in yield gap studies: Case study of wheat in Gorgan. Journal of Crop Production, 8, 183-201. (In Persian).
Hochman, Z., Gobbett, D., Horan, H., & Garcia, J. N. (2017). Data rich yield gap analysis of wheat in Australia. Field Crops Research, 197, 97-106. https://doi.org/10.1016/j.fcr.2016.08.017.
Holzworth, D., Huth, N., Devoil, P., Zurcher, E., Herrmann, N., Mclean, G., Chenu, K., & Keating, B. (2014). APSIM-evolution towards a new generation of agricultural systems simulation. Environental Modelleling and Software, 62, 327-350. https://doi.org/10.1016/j.envsoft.2014.07.009.
Hussain, S. S., & Mudasser, M. (2019). Prospects for wheat production under changing climate in mountain areas of Pakistan: An econometric analysis. Agricultural Systems, 94, 494–501. https://doi.org/10.1016/j.agsy.2006.12.001.
Innes, P. J., Tan, D. K. Y., Van Ogtrop, F., & Amthor, J. S. (2015). Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agricultural and Forest Meteorology, 208, 95-107. https://doi.org/10.1016/j.agrformet.2015.03.018.
Khalili Aghdam, N., Mosaedi, A., Soltani, A., & Kamkar, B. (2012). Evaluation of ability of lars-wg model for simulating some weather parameters in Sanandaj. Journal of Water and Soil Conservation, 19(4), 85-102. (In Persian).
Lashkari, A., Alizadeh, A., Eyshi Rezaei, E., & Bannayan, M. (2012). Mitigation of climate change impacts on maize productivity in northeast of Iran: a simulation study. Mitigation Adaptation Strategy Global Change, 17, 1-16. https://doi.org/10.1007/s11027-011-9305-y.
Li, Z. T., Yang, J. Y., Drury, C. F., & Hoogenboom, G. (2015). Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agriultural Systems, 135, 90-104. https://doi.org/10.1016/j.agsy.2014.12.006.
Lohani, N., Singh, M. B., & Bhalla, P. L. (2020). High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 71, 555-568. https://doi.org/10.1093/jxb/erz426.
Martin, M. M., Olesen, J. E., & Porter, J. R. (2014). A genotype, environment and management analysis of adaption in winter wheat to climate change in Denmark. Agricultural and Forest Meteorology, 187, 1-13. https://doi.org/10.1016/j.agrformet.2013.11.009.
Mavromatis, T., & Hansen, J. W. (2015). Interannual variability characteristics and simulated crop response of four stochastic weather generators. Agricultural and Forest Meteorology, 109(4), 283-296. https://doi.org/10.1016/S0168-1923(01)00272-6.
Navid, S., Jahansuz, M. R., Soufizadeh, S., & Ghafari, M. (2024). Predicting the changes of climatic parameters in alborz province by using the lars -wg model with risk management approach. The Quarterly Journal of Insurance & Agriculture, 13(1), 1-18.
Pastor, A. V., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., Kabat, P., & Ludwig, F. (2019). The global nexus of food trade water sustaining environmental flows by 2050. Nature Sustainability, 13, 1-18. https://doi.org/10.1038/s41893-019-0287-1.
Pradhan, S., Sehgal, V.K., Bandyopady, K.K., Panigrahi, P., Parihar, C.M., & Jat, S. (2018). Radiation interception, extinction coefficient and use efficiency of wheat crop at various irrigation and nitrogen levels in a semiarid location. Indian Journal of Plant Physiology, 23(3), 416-425. https://doi.org/10.1007/s40502-018-0400-x.
Prasad, P.V.V., & Jagadish, S.V.K. (2015). Field crops and the fear of heat stress opportunities, challenges and future directions. Procedia Environmental Sciences, 29, 36-37. https://doi.org/10.1016/j.proenv.2015.07.144.
Ray, D.K., Gerber, J.S., MacDonald, G.K., & West, P.C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 1-9. https://doi.org/10.1038/ncomms6989.
Rezaei, E. E., Siebert, S., & Ewert, F. (2015). Intensity of heat stress in winter wheat phenology compensates for the adverse effect of global warming. Environmental Research Letters, 10 (2), 12-24. https://doi.org/10.1088/1748-9326/10/2/024012.
Roberts, E. H., & Summerfield, R. J. (2007). Measurement and prediction of flowering in annual crops. Manipulation of Flowering. Butterworths, London, pp, 17-50. https://doi.org/10.1016/b978-0-407-00570-9.50007-7.
Valizadeh, J., Ziaei, S. M., & Mazloumzadeh, S. M. (2013). Assessing climate change impacts on wheat production (a case study). Journal Saudi Soc Agriculture Science, 78, 2-9. https://doi.org/10.1016/j.jssas.2013.02.002.
Vanittersum, M.K., Howden, S.M., & Asseng, S. (2016). Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture, Ecosystems & Environment, 97 (1), 25-35. https://doi.org/10.1016/S0167-8809(03)00114-2
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199-223. .