Document Type : Research Paper

Authors

Department of Agronomy, Fasa Branch, Islamic Azad University, Fasa, Iran.

Abstract

Objective: In order to investigate the feasibility of phytoremediation of cadmium nitrate-contaminated growth substrates with weeds, a factorial experiment was conducted in the form of a completely randomized design in the spring of 2021-22.
Methods: The experimental factors included weeds (Portulaca oleracea, Chenopodium album, and Amaranthus retroflexus) and the gowth substrate contamination with cadmium nitrate comprising levels of zero (control), 25, 50, and 75 miligrams per kilogram of soil.
Results: The results showed that with increasing consumption of cadmium nitrate, the amount of cadmium in the shoots, roots and biological factors exhibited an increasing trend. The amount of root cadmium was higher in P.oleracea, but the concnetration of shoot cadmium in Ch.album and A.retroflexus showed a significant increase compared to that of P.oleracea. Therefore, in purslane, the transfer of cadmium from the roots to the shoots was probably less than that of Ch.album and A.retroflexus. With the increase in cadmium nitrate concentration, ion leakage displayed an increasing trend, and  leaf relative water content and chlorophyll content displayed declining trends. On the other hand, the catalase and ascorbate peroxidase enzymes in leaves showed an increasing trend with increasing cadmium nitrate consumption. Also, the highest activity of antioxidant enzymes was observed in A.retroflexus weeds.
Conclusion: Generally, with the mentioned characteristics, ther P.oleracea plant can be considered as a hyperaccumulator, and Ch.album and A.retroflexus can be considered as moderate accumulators of cadmium metal.

Keywords

منابع

اکبرپور سراسکانرود، فاطمه؛ صدری، فرهاد و گل­علیزاده، داریوش (1391). گیاه‌پالایی خاک­های آلوده به برخی فلزات سنگین به‌وسیله چند گیاه بومی منطقه حفاظت‌شده ارسباران. نشریه حفاظت منابع آب و خاک. 1 (5)، 67-53.
جعفرزاده رزمی، مریم؛ اقدسی، مهناز؛ عبدل زاده، احمد و صادقی پور، حمیدرضا (۱۳۹۹). ارزیابی توان گیاه‌پالایی آب‌تره (Nasturium officinale L.) در رفع آلودگی کادمیوم. فصلنامه علوم و تکنولوژی محیط زیست. ۲۲ (۴)، ۲۷۸- ۲۹۸.
کافی، محمد؛ برزویی، اعظم؛ صالحی، معصوم؛ کمندی، علی؛ معصومی، علی و نباتی، جعفر (۱۴۰۰). فیزیولوژی تنش‌های محیطی در گیاهان. مشهد: انتشارات جهاد دانشگاهی. ۵۰۴ صفحه.
جهانتاب، اسفندیار؛ جعفری، محمد؛ متشرع­زاده، بابک؛ طویلی، علی و ضرغام، نصرت الله (۱۳۹۵)، ارزیابی گونه­های گیاهی مقاوم به فلزات سنگین در مناطق نفت‌خیز (مطالعه موردی: پازنان گچساران). نشریه مرتع. ۱۰ (۴)، ۴۰۹-۴۲۵.
مظفری، افشین؛ حبیبی،  داود؛ ملکی، عباس و بابایی، فرزاد (۱۳۹۱). ارزیابی توان چند گونه زراعی درکاهش آلودگی خاک به فلز سنگین کادمیوم. نشریه زراعت و اصلاح نباتات ایران. ۸ (۳)، ۱-۱۴.
 

References

Abbas, T., Rizwan, M., Shafaqat, A., Adrees, M, Zia-ur-Rehman, M., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2018). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown On Cd-contaminated saline soil. Environmental Science and Pollution Research, 25, 25668-25680. https://doi.org/10.1007/s11356-017-8987-4.
Akbarpour Saraskanroud, F., Sadri, F., & Golalizadeh, D. (2012). Phytoremediation of heavy metal (Lead, Zinc and Cadmium) from polluted soils by Arasbaran protected area native plants. Journal of Water and Soil Resources Conservation, 1, 53-66. https://doi.org/20.1001.1.22517480.1391.1.4.5.3.  (In Persian).
Arnon, D. E. (1949). Copper enzymes in isolated chloroplasts polyphenol oxidase (Beta vulgaris). Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1.
Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress. Plant Nutrition, 13, 1-37. https://doi.org/10.1080/01904169009364057.
Bini, C., Gentili, L., Maleci-Bini, L., & Vaselli, O. (1995). Trace elements in plants and soil of urban parks. Annexed to Contaminated soil prost, INRA, Paris.
Cakmak, I., & Horst, J. H. (1991). Effects of Aluminium on Lipid Peroxidation, Superoxide Dismutase, Catalase, and Peroxidase Activities in Root Tips of Soybean (Glycine max). Physiologia Plantarum, 83, 463-468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x.
Faiazan, S., Kausar, S., & Perveen, R. (2011). Varietal differences for cadmium-induced seedling mortality, foliar toxicity symptoms, plant growth, proline and nitrate reductase activity in chickpea (Cicer arietinum L.). Biology and Medicine, 3, 196-206.
Fryzova, R., Pohanka, M., Martinkova, P., Cihlarova, H., Brtnicky, M., Hladky, J., & Kynicky, J. (2017). Oxidative stress and heavy metals in plants. Reviews of environmental contamination and toxicology volume, 245, 129-156. https://doi.org/10.1007/398_2017_7.
Gajewska, E., & Sklodowska, M. (2010). Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Journal of Ecotoxic & Environ Safety, 73, 996-1003. https://doi.org/10.1016/j.ecoenv.2010.02.013.
Gjorgieva Ackova, D. (2018). Heavy metals and their general toxicity on plants. Plant Science Today 5(1), 14-18. https://doi.org/10.14719/pst.2018.5.1.355.
Howladar, S.M., (2014). A novel moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseoulus vulgaris L.) plants. Ecotoxicology and Environmental Safety, 100, 69-75. https://doi.org/10.1016/j.ecoenv.2013.11.022.
Irfan, M., Hayat, S., Ahmad, A., & Alyemeni, M.N. (2013). Soil cadmium enrichment: allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20, 1–10. https://doi.org/10.1016/j.sjbs.2012.11.004.
Jafarzadeh Razmi, M., Aghdasi, M., Abdolzadeh, A., & Sadeghipour, H. R. (2020). Evaluation of Phytoremediation Potential of Nasturtium officinal L. for Cadmium Contamination Elimination. Journal of Environmental Science and Technology, 22(4), 287-298. https://doi.org/10.22034/jest.2020.30580.3897. (In Persian).
Jahantab, E., Jafari, M., Motasharezadeh, B., Tavili, A., & Zargham, N. (2017). Evaluating tolerance of plants species to heavy metals in oil polluted region (Case study: Pazanan Gachsaran). Journal of Rangeland Science, 10(4), 409-425. (In Persian).
Jensen, C. R., Jacobsen, S. E., & Andersen, M. N. (2000). Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. European Journal of Agronomy, 13(1), 11-25. https://doi.org/10.1016/S1161-0301(00)00055-1.
Kafi, M., Borzoee, A., Salehi, M., Kamandi, A., Masoumi, A., & Nabati, J. (2021). Physiology of environmental stresses in plants. Mashhad: Jahad Daneshgahi Mashhad Publishers. (In Persian).
Kramer, U., Smith, R. D., Wenzel, W. W., Raskin, I., & Salt, D. E. (1997). The role of metal transport and tolerance in nickel hyper accumulation by Thelaspi Geosingenese Helacsy. Plant Physiology, 115, 1641-1650. https://doi.org/10.1104/pp.115.4.1641.
Kumar, N., Bauddh, K., Kumar, S., Dwivedi, N., Singh, D., & Barman, S. (2013). Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecological engineering, 61, 491-495. https://doi.org/10.1016/j.ecoleng.2013.10.004.
Lux, A., Martinka, M., Vaculik, M., & White, P. J. (2011).  Root responses to cadmium in the rhizosphere:  a review. Journal of Experimental Botany, 62, 21-37. https://doi.org/10.1093/jxb/erq281.
Mench, M. J., Didier, V. L., Loffler, M., Gomez, A., & Masson, P. (1994). A mimicked 1n-situremediation study of metal contaminated soils with emphasis on cadmium and lead. Environmental Quality, 23, 58-63. https://doi.org/10.2134/jeq1994.00472425002300010010x.
Metwally, A., Finkermeier, I., Georgi, M., & Dietz, M. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Journal of Plant Physiology, 132, 272-281. https://doi.org/10.1104/pp.102.018457.
Mozaffari, A., Habibi, D., Maleki, A., & Babai, F. (2012). Evaluation Ability of Some Crop Species for Remedation of Heavy Metal Cadmium (Cd) In Contaminated Soils. Iranian Journal of Agronomy and Plant Breeding, 8(3), 1-14. (In Persian).
Orcutt, D. M., & Nilsen, E. T. (2000). The Physiology of Plants under Stress Soil and Biotic Factors. New York: JohnWiley and Sons Inc. 680 p.
Popova, L., Maslenkova, L., Yordanova, R., Krantev, A., Szalai, G., & Janda, T. (2008) .Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. Plant Physiology, 34, 133-148.
Saijeen, S., Kaewman, O., & Suksawat, M. (2009). Evaluation of media, organic and chemical fertilizer applications on growth of pot gerbera (Gerbera jamesonii). Asian Journal Food Agro-Industry, 2, S51–S56.
Sairam, R. K., Veerrabhadra, K., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, Antioxidant activity and osmolyte concentration. Plant Science, 163, 1037-1046.
Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Efremova Aaron, S., & Aaron, J. J. (2020). Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, A review. Environmental Science and Pollution Research 27, 29927-29942. https://doi.org/10.1007/s11356-020-09354-3.
Skorzynska polit, E., Pawlikowska pawlega, B., Szczuka, E., Drazkiewicz, M., & Krupaz, Z. (2005). The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. Plant Growth Regulation, 48, 29-39.
Smolders, E. (2001). Cadmium uptake by plants. International Journal of Occupational Medicine and Environmental Health, 14, 177-183.
Sterckeman, T., & Thomine, S. (2020). Mechanisms of cadmium accumulation in plants. Critical Reviews in Plant Sciences 39, 322-359.
Wei, S., Zhou, Q., & Saha, U. K. (2008). Hyperaccumulative characteristics of weed species to heavy metals. Water, air, and soil pollution, 192, 173-181. https://doi.org/10.1007/s11270-008-9644-9.
Yuanjie, D., Wei-feng, C., Xiaoying, B., Fengzhen, L., & Yongshan, W. (2017). Effects of exogenous nitric oxide and 24-epibrassinolide on physiological characteristics of peanut under cadmium stress. Pedosphere, 1-22.
Zhang, F., Zhang, H., Wang, G., Xu, L., & Shen, Z. (2019). Cadmium-induced accumulation of hydrojen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. Hazardous Materials, 168, 76-84. https://doi.org/10.1016/j.jhazmat.2009.02.002.