Document Type : Research Paper

Authors

1 Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran. E-mail: t.rostami129@shahroodut.ac.ir

2 Corresponding Author, Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran. E-mail: habbasdokht@shahroodut.ac.ir

3 Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran. E-mail: h.makarian@shahroodut.ac.ir

4 Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran. E-mail: m.gholipoor@shahroodut.ac.ir

5 Department of Medicinal Plants and Byproducts, Research Institute of Research, Education and Extension of Forests and Rangelands, Tehran, Iran. E-mail: karimzadeh@rifr.ac.ir

10.22059/jci.2023.357310.2806

Abstract

Objective: This study aimed at assessing the effects of mycorrhiza and phosphorus fertilizer on morphophysiological traits and yield of quinoa (Chenopodium quinoa Willd.) and maize (Zea mays L.) in an intercropping system by using of replacement method.
Methods: A complete randomized block design (CRBD), with three replications was implemented at two research farms affiliated with Shahrood University of Technology, located in Shahrood and Miami cities. The intercropping systems consisted of five cropping ratios: pure quinoa and maize cultivation, 75% quinoa + 25% maize, 50% quinoa + 50% maize, 25% quinoa + 75% maize. The first factor and phosphorus at three levels (zero, 50 and 100 kgha-1) and mycorrhiza at two levels (use and unuse) were considered as the second and third factors.
Results: The results demonstrated that most of studied traits were significantly influenced by the intercropping systems, mycorrhiza application, and phosphorus concentrations. The highest plant height in maize (202.8 cm) and quinoa (81.3 cm) was obtained by use of mycorrhiza and phosphorus fertilizer 50 kgha-1. Similarly, the highest leaf area index in quinoa (86.2) and maize (6.57) amount of chlorophyll in quinoa and maize respectively (2.88 and 12.39 mg/ml) were obtained in Shahrood region by using mycorrhiza and 50 kgha-1 phosphorus fertilizer in cropping ratio 50 %.
Conclusion: According to the results, the effects of different intercropping ratio, use of mycorrhiza, and phosphorus fertilizers had a significant impact on the morphophysiological characteristics of quinoa and maize.

Keywords

بیگلوئی، محمد حسن؛ اسیمی، محمدحسین و جبارزاده، علیرضا (1385). اثر آبیاری تکمیلی بر عملکرد و اجزای عملکرد در توتون گرمخانه‌ای. نشریه علوم زراعی ایران. ۸ (۲) ،۱۸۴-۲۰۰.
رضائی چیانه، اسماعیل؛ خرم دل، سرور؛ و قره چالی، پریسا (1394). ارزیابی اثر کشت مخلوط تأخیری آفتابگردان و باقلا بر عملکرد و کارایی استفاده از زمین. به زراعی کشاورزی. 17 (1)، 183-196.
طاوسی، مهرزاد و لطفعلی صحرایی، غلام عباس (1396). کشت کینوا و نتایج تحقیقات مربوط به آن-کشت پاییزه. کرج: نشرآموزش، مؤسسه آموزش و ترویج کشاورزی.
علیزاده، خدیجه؛ رضائی چیانه، اسماعیل؛ امیرنیا، رضا و برین، محسن (1398). اثر کاربرد تلفیقی ریزوباکتری­های محرک رشد و قارچ میکوریزا در کشت مخلوط بزرک و باقلا بر خصوصیات رشدی و عملکرد دانه. نشریه پژوهش­های زراعی ایران. 17 (1)، 140-123.
ناصری ­راد، هوشنگ؛ ناصری، رحیم؛ میرزایی، امیر و زارعی، بتول (1400). بررسی اثر فسفر و میکوریزا بر عملکرد و اجزای عملکرد ارقام گندم دوروم در شرایط دیم. نشریه پژوهش­های کاربردی زراعی. 34 (3)، 68-43.
References
Araghian, S., Sadrabadi Haghighi, R., Ghasemi, M., & Sohani Darban, A. R. (2022). Yield response and Intercropping Index of Quinoa and Guar medicinal plants to different ratios of intercropping in Mashhad condition. Crop Production Journal, 14(4), 85-104. https://doi.org/10.22069/ejcp.2022.19011.2417.
Alizade, kh., Rezaei Chianeh, A., & Berin, M. (2019). The effect of combined application of growth-promoting rhizobacteria and mycorrhizal fungi in mixed cultivation of lentil and broad bean on growth characteristics and grain yield. Iranian Agricultural Research Journal, 17(1), 123-140. (In Persian).
Benafari, W., Boutasknit, A., Anli, M., Ait-El-Mokhtar, M., Ait-Rahou, Y., Ben-Laouane, R., Ben Ahmed, H., Mitsui, T., Baslam, M., & Meddich, A. (2022). The native arbuscular mycorrhizal fungi and vermicompost-based organic amendments enhance soil fertility, growth performance, and the drought stress tolerance of quinoa. Plants, 11(3), 393. https://doi.org/10.3390/plants11030393.
Begum, N., Ahanger, MA., Su, Y., Lei, Y., Mustafa, N. S. A., Ahmad, P., & Zhang, L. (2019) Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants, 8(12), 579. https://doi.org/10.3390/plants812057.
Biglouie, M. H., Assimi, M. H., & Jabbarzadeh, A. R. (2006). Effect of supplemental irrigation on yield and yield components of flue-cured tobacco. Iranian Journal of Field Crop Science, 8(2), 184-200. http://agrobreedjournal.ir/article-1-299-fa.html.  (In Persian).
Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28(4), 230-8. https://doi.org/10.1016/j.tree.2012.10.012.
Brooker, R. W., Bennett, A. E., Cong, W. F., Daniell, T. J., George, T. S., Hallett, P. D., Hawes, C., Iannetta, P. P., Jones, H. G., & Karley, A. J. (2015). Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206, 107-117. https://doi.org/10.1111/nph.13132.
Daryanto, S., Fu, B., Zhao, W., Wang, S., Jacinthe, P-A., & Wang, L. (2020). Ecosystem service provision of grain legume and cereal intercropping in Africa. Agricultural Systems, 178, 102761. https://doi.org/10.1016/j.agsy.2019.102761.
Erdogan, H., & Onur, K. (2020). Effect of Quinoa-Corn Intercropping Production System on Yield and Quality of Mixture Silage. Turkish Journal of Range and Forage Science, 1(2), 57-65. https://dergipark.org.tr/tr/pub/turkjrfs.
FAO. (2019). Food and Agriculture Organization of the United Nations data. Visible at http://www.fao.org/faostat/en/#data/QC, Accessed October 02, 2020.
Jaitieng, S., Sinma, K., Rungcharoenthong, P., & Amkha, S. (2021). Arbuscular mycorrhiza fungi applications and rock phosphate fertilizers enhance available phosphorus in soil and promote plant immunity in robusta coffee. Soil Science and Plant Nutrition, 67, 97-101. https://doi.org/10.1080/00380768.2020.1848343.
Jannoura, R., Joergensen, R. G., & Bruns, C. (2014). Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. European Journal of Agronomy, 52,259-270. http://dx.doi.org/10.1016/j.eja.2013.09.001.
Keskin, Ş., & Kaplan E. A. (2015). Use of quinoa in bakery products. Journal of Field Crops Central Research Institute, 24(2), 150-156.
Khaki Najafabadi, A., Jahan, M., Koocheki, A., & Nassiri Mahalat, M. (2017). Effects of intercropping of common millet (Panicum miliaceum L.) cowpea (Vigna unguiculata L.) and biological fertilizer inoculation on water and nitrogen use efficiencies. Iranian Journal of Field Crops Research, 15(3), 691-708. https://doi.org/10.22067/gsc.v15i3.52944.
Naserierad, H., Naseri, R., Rmirzaei, A., & Zeraei, B. (2021). Investigating the effect of phosphorus and mycorrhizae on yield and yield components of durum wheat cultivars under dry conditions. Agricultural Applied Research Journal, 34(3), 43-68. https://doi.org/10.22092/aj.2021.342492.1496.  (In Persian).
Mao, L., Zhang, L., Li, W., Werf, W., Sun, J., Spiertzand, H., & Li, L. (2012). Yield Advantage and Water Saving in Maize/ Pea Intercrop. Field Crops Research, 138, 11-20. https://doi.org/10.1016/j.fcr.2012.09.019.
Mu, H., Xue, S., Sun, Q., Shi, J., Zhang, D., Wang, D., & Wei, J. (2023). Research Progress of Quinoa Seeds (Chenopodium quinoa Wild.): Nutritional Components, Technological Treatment, and Application. Foods12(10), 2087. https://doi.org/10.3390/foods12102087.
Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids, Pigments of photosynthetic biomembrane. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1.
Onur, K. (2021). Determination of the grass yield and growth parameters of maize with quinoa intercropping at different plant mixtures. Turkish Journal of Field Crops, 26, 44-53. https://doi.org/10.17557/tjfc.877640.
Ouhaddou, R., Ben-Laouane, R., Lahlali, R., Anli, M., Ikan, C., Boutasknit, A., Slimani, A., Oufdou, K., Baslam, M., Ait Barka, E., & Meddich, A. (2022) Application of indigenous rhizospheric microorganisms and local compost as enhancers of lettuce growth, development, and salt stress tolerance. Microorganisms, 10(8), 1625. https://doi.org/10. 3390/microorganisms10081625.
Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2018). Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Industrial Crops and Products111, 38-46. https://doi.org/10.1016/j.indcrop.2017.10.006.
Rad, S. V. وValadabadi, S. A. R., Pouryousef, M., Saifzadeh, S., Zakrin, H. R., & Mastinu, A. (2020). Quantitative and qualitative evaluation of Sorghum bicolor L. under intercropping with legumes and different weed control methods. Horticulturae, 6(4), 78. https://doi.org/10.3390/horticulturae6040078.
Rezaei-chiyaneh, E., Khorramdel, S., & Garachali, P. (2015). Evaluation of relay intercropping of sunflower and faba bean on their yield and land use efficiency. Jounal of crops improvement, 17(1), 183-196. https://doi.org/10.22059/jci.2015.54797. (In Persian).
Rodriguez, C., Carlsson, G., Englund, J. E., Flöhr, A., Pelzer, E., Jeuffroy, M. H., Makowski, D., & Jensen, E. S. (2020). Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis. European Journal of Agronomy, 118, 126077. https://doi.org/10.1016/j.eja.2020.126077.
Tang, X., Bernard, L., Brauman, A., Daufresne, T., Deleporte, P., Desclaux, D., Souche, G., Placella, S. A., & Hinsinger, P. (2014). Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biology and Biochemistry, 75, 86-93. https://doi.org/10.1016/j.soilbio.2014.04.001.
Tavoosi, M., & Lotfali Ayeneh, Gh. A. (2017). Quinoa cultivation and the results of quinoa. Projects. Karaj: Agricultural Extension, Education and Research Organization (AREEO), the Agricultural Education Publication. (In Persian).
Vrignon-Brenas, S., Celette, F., Amossé, C., & David, C. (2016). Effect of spring fertilization on ecosystem services of organic wheat and clover relay intercrops. European Journal of Agronomy, 73, 73-82. https://doi.org/10.1016/j.eja.2015.10.011.
Vrignon-Brenas, S., Celette, F., Piquet-Pissaloux, A., Corre-Hellou, G., & David, C. (2018). Intercropping strategies of white clover with organic wheat to improve the trade-off between wheat yield, protein content and the provision of ecological services by white clover. Field Crops Research, 224,160-169. https://doi.org/10.1016/j.fcr.2018.05.009.
Wang, X., Zhao, R., & Yuan, W. (2020). Composition and secondary structure of proteins isolated from six different quinoa varieties from China. Journal of Cereal Science95, 103036. https://doi.org/10.1016/j.jcs.2020.103036.
Ye, D., Sun, L., Zou, B., Zhang, Q., Tan, W., & Che, W. (2018). Non-destructive prediction of protein content in wheat using NIRS. Spectrochemical Acta Part A: Molecular and Biomolecular Spectroscopy189, 463-472. https://doi.org/10.1016/j.saa.2017.08.055.