نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران. رایانامه: nasrin.teimoori@razi.ac.ir

2 نویسنده مسئول، گروه مهندسی تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران. رایانامه: ghobadi.m@razi.ac.ir

3 گروه مهندسی تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران. رایانامه: dkahrizi@razi.ac.ir 4. گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران. رایانامه: dkahrizi@razi.ac.ir

10.22059/jci.2023.359066.2811

چکیده

هدف: این پژوهش با هدف بررسی تأثیر محلول‌پاشی سیلیکون در افزایش تحمل به خشکی در گیاه کاملینا اجرا شد.
روش پژوهش: آزمایش به‌صورت فاکتوریل بر پایه طرح بلوک­های کامل تصادفی با سه تکرار در شرایط گلدانی اجرا گردید. تیمارهای آزمایش دو ژنوتیپ کاملینا (رقم سهیل و لاین-84)، تیمار خشکی (دو سطح تنش خشکی و بدون تنش خشکی) و محلول‌پاشی برگی سیلیکات‌سدیم (پنج سطح صفر، 2، 4، 6 و 8 میلی‌مولار) بودند.
یافته­ ها: نتایج نشان داد که خشکی باعث کاهش صفات عملکرد دانه، اجزای آن و صفات مورفولوژیک هر دو ژنوتیپ کاملینا شد. تنش خشکی وزن دانه در بوته در رقم سهیل و لاین-84 را به‌ترتیب 27 و 39 درصد کاهش داد. محلول‌پاشی برگی سیلیکون در افزایش عملکرد و اجزای عملکرد مؤثر بود. به‌طور میانگین، محلول‌پاشی سیلیکون در غلظت‏ 6 میلی‌مولار نسبت به تیمار شاهد باعث افزایش در صفات وزن دانه در بوته (04/13 درصد)، شاخص برداشت (1/12 درصد) و تعداد خورجین در بوته (7 درصد) شد. در تجزیه همبستگی مشخص شد که در بین اجزای عملکرد دانه، بالاترین ضریب همبستگی مثبت با وزن دانه در بوته به صفت تعداد خورجین در بوته (941/0) تعلق داشت.
نتیجه ­گیری: به‌طور کلی، به‌نظر می‏رسد که در گیاه کاملینا محلول‌پاشی سیلیکون با غلظت 6 میلی‏مولار می­تواند در افزایش تحمل به خشکی مؤثر باشد.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Silicon Foliar Application on Some Agronomic Traits of Camelina under Drought Stress Conditions

نویسندگان [English]

  • Nasrin Teimoori 1
  • Mokhtar Ghobadi 2
  • Danial Kahrizi 3

1 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran. E-mail: nasrin.teimoori@razi.ac.ir

2 Corresponding Author, Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran. E-mail: ghobadi.m@razi.ac.ir

3 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran. E-mail: dkahrizi@razi.ac.ir 4. Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. E-mail: dkahrizi@razi.ac.ir

چکیده [English]

Objective: The research aimed to investigate the effect of silicon foliar spraying in increasing drought tolerance in Camelina.
Methods: The experiment was conducted as a factorial based on a randomized complete blocks design with three replications in a pot experiment. The treatments included two Camelina genotypes (Sohail cultivar and line-84), drought treatments (at two levels: without and with drought stress) and foliar spraying of sodium silicate (at five levels: 0, 2, 4, 6 and 8 mM).
Results: The results showed that drought stress decreased grain yield, yield components, and morphological traits of both Camelina genotypes. Drought stress reduced the grain weight per plant of the Sohail cultivar and Line-84 by about 27 and 39%, respectively. Foliar application of silicon effectively increased yield and yield components. On average, foliar spraying of 6 mM silicon compared to the control treatment caused an increase in the traits of grain weight per plant (13.04%), harvest index (12.1%), and the number of siliques per plant (7%). In the correlation analysis, it was found that among the grain yield components, the highest positive correlation coefficient with the grain weight per plant belonged to the number of siliques per plant (0.941).
Conclusion: Overall, it seems that foliar application of 6 mM silicon can be effective in increasing drought tolerance in Camelina.

کلیدواژه‌ها [English]

  • Oilseed crop
  • Sodium silicate
  • The number of branches
  • The number of siliques
  • Total dry matter
حسینی فرد، مرجان السادات؛ قربانی جاوید، مجید؛ سلطانی، الیاس؛ اله دادی، ایرج و کهریزی، دانیال (1401). بررسی عملکرد دانه و محتوای روغن 40 لاین هاپلوئید مضاعف کاملینا (Camelina sativa L.). به زراعی کشاورزی. 24(2)، 497-509. doi: 10.22059/jci.2021.331945.2622
خزاعی، حمید رضا؛ پارسا، مهدی و حسین پناهی، فرزاد (1387). اثرات تلقیح نژاد­های بومی ریزوبیوم بر گره زایی ژنوتیپ­های دسی و کابلی نخود تحت رژیم­های مختلف رطوبتی در مرحله رویشی (Cicer arietinum L.). مجله پژوهش­های زراعی ایران. جلد 6(1)، 189-97.
کهریزی، دانیال؛ کاظمی تبار، سید کمال؛ سورنی، جهاد؛ رستمی احمدوندی، حسین؛ فلاح، فرشاد؛ اکبرآبادی، علی؛ رضیئی، زهرا و بخشم، مهرانگیز (1395، شهریور). معرفی گیاه روغنی- دارویی کاملینا برای شرایط دیم در ایران. اولین همایش ملی تأثیر تغییرات اقلیمی بر تولیدات گیاهی. ساری. ایران.
وزارت جهاد کشاورزی (1401). آمارنامه کشاورزی، جلد اول، محصولات زراعی. تهران: وزارت جهاد کشاورزی، 100 صفحه.
References
Abobatta, W. F. (2020). Plant responses and tolerance to combined salt and drought stress. Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms, pp. 17-52. doi.:10.1007/978-3-030-40277-8_2
Ahmad, Z., Waraich, E. A., Barutcular, C., Alharby, H., Bamagoos, A., Kizilgeci, F., ... & El Sabagh, A. (2020(. Enhancing drought tolerance in Camelina sativa L. and canola (Brassica napus L.) through application of selenium. Pakistan Journal Botany, 52(6), 1927-1939.
Angelini, L. G., Abou Chehade, L., Foschi, L., & Tavarini, S. (2020). Performance and potentiality of Camelina (Camelina sativa L. Crantz) genotypes in response to sowing date under Mediterranean environment. Agronomy. 10(12), 1929-1937. DOI: 10.3390/agronomy10121929.
Balakhnina, T., & Borkowska, A. (2013). Effects of silicon on plant resistance to environmental stresses: a review. International Agrophysics, 27(2), 225-232.
Bano, A., Gupta, A., Rai, S., Fatima, T., Sharma, S., & Pathak, N. (2021). Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. Plant Stress Physiology-Perspectives in Agriculture, pp. 1-18. doi.:  10.5772/intechopen.101045
Bathoova, M., Bokor, B., Soukup, M., Lux, A., & Martinka, M. (2018). Silicon‐mediated cell wall modifications of sorghum root exodermis and suppression of invasion by fungus Alternaria alternata. Plant Pathology, 67(9), 1891-1900.
Carvalho-Zanão, M. P., Zanao Junior, L. A. Barbosa, J. G. Groosi, J. A. S., & Avila, V. T. (2012). Yield and shelf life of chrysanthemum in response to the silicon application. Horticultura Brasileira, 30, 403-408.
Craine, W., Lu, CH., Garrison Garneau, M., Bates, PH., & Hulbert, S. (2022). Registration of ‘WA-LE1’, an edible oil camelina cultivar. Journal of Plant Registrations, 16(2), 229-233. doi.: /10.1002/plr2.20205
Ghorbani, M., Kahrizi, D., & Chaghakaboodi, Z. (2020). Evaluation of Camelina sativa doubled haploid lines for the response to water-deficit stress. Journal of Medicinal Plants and By-products, 2,193-199.
Gong, H., & Chen, K. (2012). The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiologiae Plantarum. 34, 1589-1594.
Guo, Q., Meng, L., Mao, P., & Tian, X. (2013). Role of silicon in alleviating salt-induced toxicity in white clover. Bulletin of environmental contamination and toxicology, 91, 213-216.
Hasanuzzaman, M., Nahar, K., Anee, T. L., Khan, M. L. R., & Fujita, M. (2018). Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. South African Journal of Botany, 115, 50–57.
Hosseinifard, M., Ghorbani Javid, M., Soltani, E., Allah dadi, I., & Kahrizi, D. (2022). Evaluation of Seed Yield and Oil Content of 40 Camelina (Camelina sativa L.) Doubled Haploid Lines. Journal of Crops Improvement, 24(2), 497-509. doi: 10.22059/jci.2021.331945.2622. (In Persian).
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., & Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences23(9), 5186.
Huang, P., H, Lili Abbas, A., Hussain, S., Du, D., Hafeez, M., Balooch, S., Noreen, Z., Ren, X., Muhammad, M., & Saqi, M. (2021). Seed priming with sorghum water extract improves the performance of Camelina (Camelina sativa (L.) Crantz.) under salt stress. Plants, 10(749), 1–15. doi:10.3390/plants10040749
Hussain, S., Mumtaz, M., Manzoor, S., Shuxian, L., Ahmed, I., Skalicky, M., Brestic, M., Rastogi, A., Ulhassan, Z., Shafiq, I., &  Allakhverdiev, S. I. (2021). Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiology and Biochemistry, 159, 43-52.
Jiang, Y., & Caldwell, CD. (2016). Effect of nitrogen fertilization on camelina seed yield, yield components, and downy mildew infection. Canadian Journal of Plant Science, 96(1), 17-26.
Kahrizi, D., Kazemitabar, SK., Soorni, J., Rostami-Ahmadvandi, H., Falah, F., Akbarabadi, A., Raziei, Z., & Bakhsham, M. (2016, September). Introducing of camelina medicinal-oil plant for dryland conditions in Iran. National Conference on the Impact of Climate Change on Plant Production. Sari, Iran. (In Persian).
Kahrizi, D., Rostami Ahmadvandi, H., & Akbarabadi, A. (2015). Feasibility Cultivation of Camelina (Camelina sativa) as Medicinal-Oil Plant in Rainfed Conditions in Kermanshah-Iran's First Report. Journal of Medicinal Plants and By-products, 2, 215-218.
Konkova, N. G., Shelenga, T. V., Gridnev, G. A., Dubovskaya, A. G., & Malyshev, L. (2021). Stability and variability of camelina sativa L. crantz economically valuable traits in various eco-geographical conditions of the Russian federation. Agronomy, 11(2), 332-340. doi.: 10.3390/agronomy11020332
Kurasiak-Popowska, D., Tomkowiak, A., Człopińska, M., Bocianowski, J., Weigt, D., &  Nawracała, J. (2018). Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes. Industrial Crops and Products, 123, 667–675. doi.:10.1016/j.indcrop.2018.07.001
Maghsoudi, K., Emam, Y., &  Ashraf, M., (2015). Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish Journal of Botany, 39(4), 625-634.
Martinelli, T., & Galasso, I. (2011). Phenological growth stages of Camelina sativa according to the extended BBCH scale. Annals of Applied Biology, 158(1), 87-94.
Matteo, R., D’Avino, L., Ramirez-Cando, L. J., Pagnotta, E., Angelini, L. G., Spugnoli, P., & Lazzeri, L. (2020). Camelina (Camelina sativa L. Crantz) under low-input management systems in northern Italy: yields, chemical characterization and environmental sustainability. Italian Journal of Agronomy, 15(1519), 132-143. doi.:10.4081/ija.2020.1519
Ministry of agriculture-Jihad (2022). Agricultural statistics. First volume. Crops. Tehran, Ministry of agriculture-Jihad, pp. 100 (In Persian)
Moravveji, S., Zamani, GR., Kafi, M., & Alizadeh, Z. (2016). Effect of different salinity levels on yield and yield components of spring canola cultivars (Brassica napus L.) and Indian mustard (B. juncea L.). Environmental Stresses in Agricultural Sciences, 10(3), 445-457.
Nazeri, P., Shirani Rad, AH., ValadAbadi, SA., Mirakhori, M., & Hadidi Masoule, E. (2018). Effect of sowing dates and late season water deficit stress on quantitative and qualitative traits of canola cultivars. Outlook on Agriculture, 47(4), 291-297.
Nemali, K. S., Bonin, C., Dohleman, F. G., Stephens, M., Reeves, W. R., Nelson, D. E., Castiglioni, P., Whitsel, J. E., Sammons, B., Silady, R. A., & Anstrom, D. (2015). Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought‐tolerant maize. Plant, Cell & Environment, 38(9), 1866-1880.
Obour, A. K., Obeng, E., Mohammed, Y. A., Ciampitti, I. A., Durrett, T. P., Aznar-Moreno, Jose A., & Chen, C. (2017). Camelina seed yield and fatty acids as influenced by genotype and environment. Agronomy Journal, 109(3), 947–.957. doi:10.2134/agronj2016.05.0256.
Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9(11), 712.
Parande, S., Zamani, G. R., Zahan, M. H. S., & Ghader, M. (2013). Effects of silicon application on the yield and component of yield in the common bean (Phaseolus vulgaris) under salinity stress. International Journal of Agronomy and Plant Production, 4, 1574-1579.
Parsa, B., Abbasdokht, H., Gholami, A., & Faraji, A. (2017) The Effect of Bradyrhizobium japonicum, Mycorrhiza and Chemical Fertilizer on Quantitative and Qualitative Characteristics of Soybean (Glycine max L. cultivar Katoul) in Condition of Presence and Absence of Weeds. Weed Research Journal, 9(1), 33-48.
Parveen, N., & Ashraf, M. (2010). Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pakistan Journal of Botany, 42, 1675- 1684.
Popa, A. L., Jurcoane, S., & Dumitriu, B. (2017). Camelina sativa oil-a review. Scientific Bulletin. Series F. Biotechnologies, 21, 233-238.
Rodrigues, F.A., Resende, R. S., Dallagnol, L. J., & E Datnoff, L. (2015). Silicon potentiates host defense mechanisms against infection by plant pathogens. Silicon and plant diseases, 109-138.
Rostami Ahmadvandi, H., & Faghihi, A. (2021). Adapted Oilseed Crops with the Ability to Grow Economically in Dryland Conditions in Iran. Agrotechniques in Industrial Crops, 1(3), 122-128. 10.22126/ATIC.2021.6518.1015.
Rostami Ahmadvandi, H., Zeinodini, A., Ghobadi, R., & Gore, M. (2021). Benefits of Adding Camelina to Rainfed Crop Rotation in Iran: A Crop with High Drought Tolerance. Agrotechniques in Industrial Crops, 1(2), 91-96.10.22126/ATIC. 2021. 6410. 1007.
Schillinger,W. F. (2019). Camelina: Long-term cropping systems research in a dry Mediterranean climate. Field crops research, 235, 87-94.
Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in plant science, 9, 1705.
Soroka, J. J., Olivier, C., Wist, T. J., & Grenkow, L. (2017). Present and potential impacts of insects on camelina and crambe. In Integrated management of insect pests on canola and other Brassica oilseed crops, pp. 316-340. Wallingford UK: CABI
Teimoori, N., Ghobadi, M., & Kahrizi, D. (2023). Improving the Growth Characteristics and Grain Production of Camelina (Camelina sativa L.) under Salinity Stress by Silicon Foliar Application. Agrotechniques in Industrial Crops, 3(1), 1-13.
Verma, K. K., Song, X. P., Zeng, Y., Li, D. M., Guo, D. J., Rajput, V. D., Chen, G. L., Barakhov, A., Minkina, T. M., & Li, Y. R. (2020). Characteristics of leaf stomata and their relationship with photosynthesis in Saccharum officinarum under drought and silicon application. ACS omega, 5(37), 24145-24153.
Walia, M. K., Zanetti, F., Gesch, R. W., Krzyżaniak, M., Eynck, C., Puttick, D., & Monti, A. (2021). Winter camelina seed quality in different growing environments across Northern America and Europe. Industrial Crops and Products, 169, 113639. doi:10.1016/j.indcrop.2021.113639.
Waraich, EA., Ahmed, Z., Ahmad, R., & Shabbir, RN. (2017). Modulating the phenology and yield of camelina sativa L. by varying sowing dates under water deficit stress conditions. Soil Environment, 36(1), 84-92.
Załuski, D., Tworkowski, J., Krzyżaniak, M., Stolarski, M. J. & Kwiatkowski, J. (2020). The characterization of 10 spring Camelina genotypes grown in environmental conditions in North-Eastern Poland. Agronomy, 10(1), 64-73. doi.: 10.3390/agronomy10010064
Zanetti, F., Gesch, R. W., Walia, M. K., Johnson, J. M. F., & Monti, A. (2020). Winter camelina root characteristics and yield performance under contrasting environmental conditions. Field Crops Research, 252, 107794. doi.:10.1016/j.fcr.2020.107794.
Zhang, W., Xie, Z., Lang, D., Cui, J., & Zhang, X. (2017). Beneficial Effects of Silicon on Abiotic Stress Tolerance in Legumes. Journal of Plant Nutrition, 40(15), 2224-2236.