Document Type : Research Paper

Authors

1 Department of Horticultural Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. E-mail: mina.amani98@ms.tabrizu.ac.ir

2 Corresponding Author, Department of Horticultural Science and Engineering, Orientation of Medicinal Plants, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. E-mail: s.alizadeh@tabriu.ac.ir

3 Department of Horticultural Science and Engineering, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran. E-mail: m.sabzi@tabrizu.ac.ir

4 Department of Horticultural Science and Engineering, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran. E-mail: myounessi@tabrizu.ac.ir

Abstract

Objective: Taking advantage of the symbiotic relationship between plants and Trichoderma fungi is one of the ways to reduce water stress in plants. The present study was conducted in order to investigate the effect of Trichoderma fungus on the antioxidant properties of the basil medicinal plant (Ocimum basilicum L.) under water stress conditions.
Methods: This experiment was carried out in the greenhouse of the Department of Horticulture Sciences of Ahar Faculty of Agriculture and Natural Resources and laboratory studies in the basic and general laboratories of Ahar Faculty of Agriculture and Natural Resources (University of Tabriz) in 2019 in a factorial manner based on a randomized complete block design with three repetitions. The treatments included different levels of water deficit stress, including severe stress (25% of field capacity), moderate stress (50% of field capacity), mild stress (75% of field capacity), and no stress (100% of field capacity). Each pot contained a commercial mushroom species Trichoderma harzianum Na-lac with concentrations of 109 and 106 spores per milliliter as the inoculum.
Results: The results showed that the amount of malondialdehyde, catalase and peroxidase, antioxidant activity and total flavonoid increased with the application of dehydration stress. The concentration of 106 spores per milliliter had a better impact on improving the mentioned indicators. Based on this, Trichoderma fungus proves effective when improving the antioxidant status of plants under drought stress and can prevent the effects of oxidative stress in plants by reducing the oxygen free radicals produced.
Conclusion: The results indicated that the use of Trichoderma mushroom in comparison with the control (without inoculation with the mushroom) can be a suitable tool to improve the physiological traits and antioxidant activities in the conditions drought stress.

Keywords

امانی، مینا؛ سبزی نوجه­ده، محسن؛ علیزاده سالطه، سعیده؛ یونسی حمزه­خانلو، مهدی؛ فرمانی، بیوک­آقا؛ هاتف هریس، ح؛ محمدیان، ش و پیرطریقت، س (1401). بهبود فعالیت‌های آنتی‌اکسیدانی گیاه دارویی ریحان تحت تأثیر گونه‌های مختلف قارچ ‏میکوریزا در شرایط تنش کم‌‌‌‌‌‌آبی. نشریه علوم باغبانی، انتشار آنلاین. https://doi.org/10.22067/jhs.2022.76064.1157
امیری دوماری، زینب (1395). اثر قارچ تریکودرما (Trichoderma harzianum) بر بیان ژن RAS تحت تأثیر تنش خشکی در گیاهان بادرنجبویه (Melissa officinalis L.) و بادرشبویه (Dracocehalum moldavica L.). پایان نامه کارشناسی ارشد. به راهنمایی براتعلی فاخری. زابل: دانشگاه زابل، دانشکده کشاورزی، گروه باغبانی و فضای سبز.
حبیبی، داود؛ عروج­نیا، س؛ فتح­الله طالقانی، د؛ پازکی، ع و داودی­فرد، مهدی (1391). بررسی تغییرات آنزیم­های آنتی‌اکسیدانت و عملکرد در ژنوتیپ­های مختلف چغندرقند تحت شرایط تنش خشکی. مجله زراعت و اصلاح نباتات، 8 (4)، 63-82.
خوش‌منظر، الهه (1394). تأثیر جدایه­های تریکودرما بر رشد و تحمل کم­آبی گوجه­فرنگی در یک خاک شن لومی. پایان‌نامه کارشناسی ارشد، به راهنمایی ناصر علی­اصغرزاد. تبریز: دانشگاه تبریز، دانشکده کشاورزی.
رحیمی، یوسف؛ طالعی، علیرضا و رنجبر، مجتبی (1398). تغییرات بیوشمیایی نعناع فلفلی (Mentha piperita L.) در شرایط خشکی. علوم گیاهان زراعی ایران، 50 (2)، 59-75.
زارع مهرجردی، محمد؛ باقری، عبدالرضا؛ بهرامی، احمدرضا؛ نباتی، جعفر و معصومی، علی (1391). ‫ تأثیر تنش خشکی بر خصوصیات فتوسنتزی، ترکیبات فنلی و ظرفیت مهار رادیکال‌های فعال ژنوتیپ‌های مختلف نخود (Cicer arietinum L.) در محیط آبکشت. علوم و فنون کشت‌های گلخانه‌ای، 3 (12)، http://dorl.net/dor/20.1001.1.20089082.1391.3.4.9.3.
محسن­زاده, فریبا؛ ظفری، دوست­مراد و نوری صفا، بهاره (1395). سازش­پذیری برخی از گونه­های قارچ تریکودرما (Trichoderma) به آلودگی نفتی. پژوهش‌های سلولی و مولکولی (مجله زیست شناسی ایران)، 29 (3)، 321-330.
مرزبان، زهرا؛ عامریان، محمدرضا و ممرآبادی، مجتبی (1393). خصوصیات زراعی ذرت و لوبیا چشم بلبلی در پاسخ به مصرف قارچ میکوریزا و باکتری مزوریزوبیوم به صورت کشت مخلوط و خالص. اکوفیزیولوژی گیاهان زراعی، 8 (2(30))، 165-180.
یعقوبیان، یاسر؛ عالمی، سعید خلیل؛ پیردشتی، همت‌اله؛ محمدی گل تپه، ابراهیم؛ فیضی اصل، ولی و اسفندیاری، عزت اله (1392). اثر قارچ‌های Glomus mosseae و Piriformospora indica و سطوح مختلف مواد آلی بر روابط بین صفات مرتبط با عملکرد گندم. تحقیقات غلات، 3 (3)، 211-226.
 
References
Ahmad, M., Zaffer, G., Razvi, S. M., Dar, Z. A., Mir, S. D., Bukhari, S. A., & Habib, M. (2014). Resilience of cereal crops to abiotic stress: A review. African Journal of Biotechnology, 13(29), 121-130.
Amani, M., Sabzi Nojadeh, M., Alizadeh-salteh, S., Younessi Hamzekhanlu, M., Farmani, B., Hatef Heris, H., Mohammadian, S., & Piretarighat, S. (2022). Improving the Antioxidant Activities of Basil (Ocimum basilicum L.) under the Influence of Different Species of Mycorrhiza under Water Stress. Scientific Journal of Horticultural Sciences, Online publication. https://doi.org/10.22067/jhs.2022.76064.1157. (In Persian).
Amini, R., Ebrahimi, A., & Nasab, A. D. M. (2020). Moldavian balm (Dracocephalum moldavica L.) essential oil content and composition as affected by sustainable weed management treatments. Industrial Crops and Products, 150, 112416.
Amir Domari, Z. (2016). Effect of Trichoderma (Trichoderma harzianum) on RAS gene expression under drought stress in Melissa officinalis L. and Dracocehalum moldavica L. Master Thesis. Under the supervision of Bratali Fakheri. Zabol: Zabol University, Department of Horticulture and Green Space Faculty of Agriculture. (In Persian).
Asaduzzaman, M., Alam, M. J., & Islam, M. M. (2010). Effect of Trichoderma on seed germination and seedling parameters of chili. Journal of Science Foundation, 8(1-2), 141-150.
Azarmi, R., Hajieghrari, B., & Giglou, A. (2011). Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10(31), 5850-5855.
Daszkowska-Golec, A., & Szarejko, I. (2013). Open or close the gate–stomata action under the control of phytohormones in drought stress conditions. Frontiers in Plant Science, 4, 138-145.
Dehghan, G., & Khoshkam, Z. (2012). Tin (II)-quercetin complex: Synthesis, spectral characterization and antioxidant activity. Food Chemistry, 131(2), 422-427.
Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557-562.
Habibi, D., Ooroojnia, S., Fatollah Taleghani, D., Pazoki, A., & Davoodifard, M. (2013). Antioxidants and yield evaluation of sugar beet genotypes under drought stress. Iranian Journal of Agronomy and Plant Breeding, 8(4), 63-82. (In Persian).
Haq, T. U., Ali, A., Nadeem, S., Maqbool, M. M., & Ibrahim, M. (2014). Performance of canola cultivars under drought stress induced by withholding irrigation at different growth stages. Soil Environment, 33(1), 43-50.
Heidari, Z., Nazarideljou, M. J., Rezaie Danesh, Y., & Khezrinejad, N. (2016). Morphophysiological and biochemical responses of Zinnia elegans to different irrigation regimes in symbiosis with Glomus mosseae. International Journal of Horticultural Science and Technology, 3(1), 19-32.
Khoshmanzar, E. (2015). Effects of Trichoderma isolates on tomato growth and tolerance to water deficit stress in a loamy sand soil. Master Thesis. Under the supervision of Nasser Ali Asgharzad. Tabriz: Tabriz University, Faculty of Agriculture. (In Persian).
Li, Y. T., Hwang, S. G., Huang, Y. M., & Huang, C. H. (2018). Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection, 110, 275-282.
Marzban, Z., Ameriyan, M., & Mamarabadi, M. (2014). Responses of Agronomic Characteristics of Maize and Cowpea to Mycorrhiza and Mesorrhizobial Bacteria in Intercropping. Journal of Crop Ecophysiology, 8(30(2)), 165-180. (In Persian).
Mastouri, F., Björkman, T., & Harman, G. E. (2012). Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molecular Plant-microbe Interactions, 25(9), 1264-1271.
Mohsenzadeh, F., Zafari, D., & Nouri Safa, B. (2016). Adaptation of some fungal species of Trichoderma to petroleum pollution. Journal of Cellular and Molecular Research (Iranian Journal of Biology), 29(3), 321-330. (In Persian).
Nugraha, A. T., Muawanah, A., Amilia, N., & Wulandari, M. (2022). The Total Phenolic, Total Flavonoid, and Brown Pigment in Honey before and After Heating. Elkawnie: Journal of Islamic Science and Technology, 8(1), 190-208.
Nzanza, B., Marais, D., & Soundy, P. (2012). Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Science Horticulture. 144, 55-59.
Rahimi, Y., Talei A., & Ranjbar, M. (2019). The effect of drought stress on biochemical changes of peppermint, Iranian Journal of Crop Science, 50(2), 59-75. (In Persian).
Rahmatzadeh, S., & Kazemitabar, S. K. (2013). Biochemical and antioxidant changes in regenerated periwinkle plantlets due to mycorrhizal colonization during acclimatization. International Journal of Agriculture and Crop Sciences, 5(14), 1535-1540.
Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2012). Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78-88.
Siddiqui, M. H., Mohammad, F., Khan, M. N., Al-Whaibi, M. H., & Bahkali, A. H. (2010). Nitrogen in relation to photosynthetic capacity and accumulation of osmoprotectant and nutrients in Brassica genotypes grown under salt stress. Agricultural Sciences in China, 9(5), 671-680.
Singh, R., Shushni, M. A., & Belkheir, A. (2015). Antibacterial and antioxidant activities of Mentha piperita L. Arabian Journal of Chemistry, 8(3), 322-328.
Subramanian, K. S., Santhanakrishnan, P., & Balasubramanian, P. (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturea, 107(3), 245-253.
Wu, Q. S., & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417-425.
Yaghoubian, Y., Alamisaeid, K., Pirdashti, H., Mohammadi Goltapeh, E., Feiziasl, V., & Esfandiari, E. (2013). Effect of Glomus Mosseae and Piriformospora Indica and Different Levels of Organic Matter on the Relationships between Related Characters with Wheat Yield. Cereal Research, 3(3), 311-326. (In Persian).
Zare Mehrjerdi, M., Bagheri, A., Bahrami, A., Nabati, J., & Massomi, A. (2013). Effect of drought stress on photosynthetic characteristics, phenolic compounds and radical scavenging activities in different chickpea (Cicer arietinum L.) genotypes in hydroponic conditions. Science and Technology of Greenhouse Culture, 3(12), 59-77. http://dorl.net/dor/20.1001.1.20089082.1391.3.4.9.3. (In Persian).
Zhang, Z., Huber, D. J., & Rao, J. (2013). Antioxidant systems of ripening avocado (Persea americana Mill.) fruit following treatment at the preclimacteric stage with aqueous 1-methylcyclopropene. Postharvest Biology and Technology, 76, 58-64.
Zheng, X. L., Tian, S. P., Xu, Y., & Li, B. Q. (2005). Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at controlled atmosphere. Journal of Fruit Science, 22(4), 351-355.
Zhu, X., Song, F., & Xu, H. (2010). Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20(5), 325-332.