Document Type : Research Paper


1 Corresponding Author, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail:

2 Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail:

3 Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail:

4 Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail:

5 Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail:

6 Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. E-mail:



Objective: This research was carried out in order to investigate the effect of irrigation regimes on morphological traits of root and shoot of safflower genotypes.
Methods: A field experiment has been conducted via polyvinyl chloride (PVC) pipes at research field of Seed and Plant Improvement Institute in Karaj, during 2019-2020. A factorial experiment has been laid out in a randomized complete block design with three replications. This study deals with six genotypes of safflower (Varamin landrace, Hamand landrace, Kazakhstan genotype and Amir, Goldasht and Pernian cultivars) in two irrigation regimes, including full irrigation (control) and drought stress (Irrigation after depletion of 40% and 80% of soil available moisture respectively) treatments.
Results: The results showed that under drought stress conditions, root length and root diameter have increased by 28.6% and 13.6%, respectively and root dry weight, leaf relative water content (RWC), number of bolls, number of seeds per plant and seed yield per plot and was decreased by 23.6%, 15.2%, 25.4%, 63.3%, and 74.9%, respectively. Under full irrigation conditions, Amir with suitable root system (root dry weight 7.7 g and root length 71 cm) and maximum number of seeds had the highest seed yield (5.03 g per plot). In addition, under drought stress conditions, Amir cultivar had early flowering, maximum root dry weight and length, highest activity of catalase and peroxidase enzymes, and the highest seed yield per plot (1.67 g).
Conclusion: Generally, Amir cultivar had more seed yield due to having a suitable root system and superior agronomic characteristics and was selected as the superior genotype.


غلامحسینی، مجید؛ حبیب‌زاده، فرهاد و همتی، پریسا (1400). ارزیابی خصوصیات ریشه و اندام هوایی ژنوتیپ‌های کنجد تحت شرایط مختلف رطوبت خاک. به‌زراعی کشاورزی، 23(2)، 393-407.
جبّاری، حمید (1400). ارزیابی لاین امیدبخش SAF-95-14 گلرنگ از نظر تحمل به تنش خشکی در شرایط کنترل‌شده. گزارش نهایی طرح پژوهشی. تهران: مؤسسه تحقیقات اصلاح و تهیه نهال و بذر.
حسینعلی‌پور، بهاره؛ راهنما، افراسیاب و فرخیان فیروزی، احمد (1399). اثر تنش خشکی بر رشد و معماری ریشه‌ گندم در مرحله رشد رویشی. علوم گیاهان زراعی ایران. 51 (1)، 63-75.
جبّاری، حمید؛ خوش‌خلق سیما، نیر اعظم؛ اکبری، غلام‌عباس؛ اله‌دادی، ایرج؛ شیرانی‌راد، امیرحسین و حامد، علی. (1395). بررسی رابطه سیستم ریشه‌ای با روابط آبی کلزا در شرایط تنش خشکی، به زراعی کشاورزی. 18 (1)، 1-19.
امیدی، امیرحسین (۱۳۹۰). اثر قطع آبیاری در مراحل مختلف رشد بر عملکرد دانه و شاخص‌های تحمل به تنش در سه رقم گلرنگ. نشریه علوم زراعی ایران. ۱۳ (۱)،۱۱۶-۱۳۰.
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126.
Achhale, D. (2016). Screening of safflower (Carthamus tinctorius L.) Genotypes for drought tolerance. Master of science dissertation. Madhya: Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya gwalior college of agriculture.
Bengough, A. G., McKenzie, B. M., Hallett, P. D., & Valentine, T. A. (2011). Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62, 59-68.
Chance, B., & Maehly, A. C. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2, 764-817.
Chavoushi, M., Najafi, F., Salimi, A., & Angaji, S. A. (2019). Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Industrial Crops and Products, 134, 168-176.
Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842-862.
Gholamhoseini, M., habibzadeh, F., & hemmati, P. (2021). Evaluation of Root and Shoot Characteristics of Sesame Genotypes under Different Soil Moisture ‎Conditions. Journal of Crops Improvement, 23(2), 393-407. (In Persian).
Hojati, M., Modarres-Sanavy, S. Karimi, M. & Ghanati, F. (2011). Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologiae Plantarum, 33(1),105-112.
Hosseinalipour, B., Rahnama, A., & Farrokhian Firouzi, A. (2020). Effect of drought stress on wheat root growth and architecture at vegetative growth stage. Iranian Journal of Field Crop Science, 51(1), 63-75. (In Persian).
Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., & Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36(4), 1-31.
Jabbari, H. (2021). Evaluation of promising safflower line SAF-95-14 for drought tolerance in controlled conditions. Final report, Ministry of Agriculture Jihad. Tehran: Agricultural Research, Education and Extension Organization, Seed and Plant Improvement Institute. (In Persian).
Jabbari, H., Khosh kholgh Sima, N. A., Akbari, G. A., Allahdadi, I., Shirani rad, A. H., & Hamed, A. (2016). Study of root system relationship with water relations in Rapeseed under drought stress conditions. Journal of Crops Improvement, 18(1), 1-19. (In Persian).
Jiang, Y., & Huang, B. (2001). Osmotic adjustment and root growth associated with drought preconditioning- enhanced heat tolerance in Kentucky bluegrass. Crop Science, 41, 1168-1173.
Joshan, Y., Sani, B., Jabbari, H., Mozafari, H., & Moaveni, P. (2019). Effect of drought stress on oil content and fatty acids composition of some safflower genotypes. Plant & Soil Environment, 65, 563-567.
Manvelian, J., Weisany, W., Abdul-razzak Tahir, N., Jabbari, H., & Diyanat, M. (2021). Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress. Industrial Crops and Products, 172, 114069.
Misra, A., & Sricastatva, N. K. (2000). Influence of water stress on Japanese mint. Journal of Herbs, Spocces and Medician Plants, 7, 51-58.
Mozaffari, K., & Asadi, A. A. (2006). Relationships among traits using correlation, principal components and path analysis in safflower mutants sown in irrigated and drought stress condition. Asian Journal of Plant Sciences, 5(6), 977-983.
Omidi, A. H. (2012). Effect of irrigation withhold at different growth stages on grain yield and stress tolerance indices in three safflower cultivars. Iranian Journal of Crop Sciences, 13(1), 116-130. (In Persian).
Palta, J. A., Chen, X., Milroy, S. P., Rebetzke, G. J., Dreccer, M. F., & Watt, M. (2011). Large root systems: Are they useful in adapting wheat to dry environments? Functional Plant Biology, 38, 347-354.
Pasban Eslam, B. (2011). Evaluation of physiological indices for improving water deficit tolerance in spring safflower. Journal of Agriculture Science and Technology, 13, 327-338.
Pasban Eslam, B. (2015). Stability of grain and oil yields and its components in oilseed Rape (Brassica napus L.) under early and late season drought. Journal of  Agricultural Science and Sustainable Production, 25(4), 176-187.
Rahmani, F., Sayfzadeh, S., Jabbari, H., Valadabadi, S. A., & Hadidi Masouleh, E. (2019). Alleviation of drought stress effects on safflower yield by foliar application of zinc. International Journal of Plant Production, 13(4), 297-308.
Rousseau, D., Widiez, T., Di Tommaso, S., Rositi, H., Adrien, J., Maire, E., Langer, M., Oliver, C., Peyrin, F., & Rogowsky, P. (2015). Fast virtual histology using X-ray in-line phase tomography: application to the 3D anatomy of maize developing seeds. Plant methods, 11(55), 1-10.
Salem, N., Msaada, K., Dhifi, W. W., Sriti, J. Mejri, H. Limam, F., & Marzouk, B. (2014). Effect of drought on safflower natural dyes and their biological activities. Experimental and Clinical Sciences, 13, 1-18.
Silva, M. D. A., Jifon, J. L., Santos, C. M. D., Jadoski, C. J., & Silva, J. A. G. D. (2013). Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. Brazilian archives of biology and technology, 56(5), 735-748.
Singh, V., & Nimbkar, N. (2007). Safflower (Carthamus tinctorius L.). In Genetic Resources Chromossome Engineering, and Crop Improvement: Oil Crops. edited by Singh, R. J. New York: CRC Press.
USDA Agricultural Research Service. (2019). Germplasm Resources Information Network (GRIN). The United States of America: USDA Agricultural Research Service.
Wasaya, A., Zhang, X., Fang, Q. & Yan, Z. (2018). Root Phenotyping for Drought Tolerance: A Review. Agronomy, 8(11), 241-261.
Wu, W., Duncan, R.W., & Ma, B. L. (2017). Quantification of canola root morphological traits under heat and drought stresses with electrical measurements. Plant & Soil, 415, 229-244.
Zadehbagheri, M., Mojtaba, M., Javanmardi, S., & Sharafzadeh, S. (2012). Effect of drought stress on yield and yield components, relative leaf water content, proline and potassium ion accumulation in different white bean (Phaseolus vulgaris L.) genotype. African Journal of Agricultural Research, 7(42), 5661-5670.
Zafari, M., Ebadi, A., Jahanbakhsh, S., & Sedghi, M. (2020). Safflower (Carthamus tinctorius) biochemical properties, yield, and oil content affected by 24-epibrassinosteroid and genotype under drought stress. Journal of Agricultural and Food Chemistry, 368(22), 6040-6047.