Document Type : Research Paper

Authors

1 Department of Agronomy, Faculty of Agriculture, Shahrekord University, Chaharmahal and Bakhtiari, Iran. E-mail: mirzaeii@ stu.sku.ac.ir

2 Corresponding Author, Department of Agronomy, Faculty of Agriculture, Shahrekord University, Chaharmahal and Bakhtiari, Iran. E-mail: rafiei@sku.ac.ir

3 Department of Soil Science and Engineering, Agricultural Sciences and Natural Resources , University of Khuzestan, Khuzestan, Iran. E-mail: rangzan@asnrukh.ac.ir

4 Department of Agronomy, Faculty of Agriculture, Shahrekord University, Chaharmahal and Bakhtiari, Iran. E-mail: amiryousefi@stu.sku.ac.ir

Abstract

Objective: Quinoa, with its high nutritional value, is highly resistant to a wide range of non-biological stresses. Despite the limited resources and the increasing demand for food products in lands with low or limited fertility, it can be cultivated well and produces a good product.
Methods: This experiment was conducted with the aim of investigating the simultaneous effect of drought stress and heavy metals on the quinoa plant, in a factorial format in a completely randomized design with 3 replications. The first component involved two levels of soil (contaminated and uncontaminated), and the second factor, three levels of drought stress (100% of field capacity 60% of field capacity, and 30% of field capacity).
Results: Interaction effect of soil type and drought stress was significant on all traits except the fresh weight of shoot and plant height. The lowest amount of fresh and dry weight of roots, dry weight of shoot and weight of thousand seeds was observed in contaminated soil with severe drought stress. Nevertheless, the weight of 1000 quinoa seeds under the influence of moderate drought stress was not significantly different from the condition without drought stress. Examining the simple effects showed that soil contamination with heavy metals caused a decrease of 13.7% in fresh weight of shoot and 30.5% decrease in dry weight of shoot compared to plants grown in uncontaminated soil.
Conclusion: In general, it can be stated that the increase in drought stress has significantly reduced root fresh weight and 1000 seed weight in quinoa, but the percentage and ratio of this reduction in soil contaminated with heavy metals was much higher than that of non-contaminated soil. According to the results of this research, the cultivation of quinoa can be investigated as a promising plant in soils with similar limitations.

Keywords

احمدی­آذر، فرزاد؛ حسنلو، طاهره؛ ایمانی، علی و فیضی اصل، ولی (1394). تنش خشکی و کاربرد زئولیت معدنی بر رشد و برخی پارامترهای فیزیولوژیکی گیاه پنیرک (Malva sylvestris). پژوهش‌های گیاهی (مجله زیست‌شناسی ایران). 28 (3)، 459-474.
 امیریوسفی، مهدی، تدین، محمودرضا و حسینی فرد، مرجان سادات (1401). تأثیر کودهای زیستی نیتروژنه و فسفره بر برخی صفات جوانه‌زنی بذر دو رقم کینوا تحت تنش شوری. مهندسی اکوسیستم بیابان. 8 (24)، 79-94. doi: 10.22052/deej.2018.7.24.49
حسینی، یاسر؛ رمضانی مقدم، جواد؛ نیک‌پور، محمدرضا و عبدلی، عطیه (1397). ارزیابی توابع جذب آب در شرایط تنش هم‌زمان خشکی و شوری در گیاه گوجه‌فرنگی مینیاتوری. پژوهش آب در کشاورزی. 32 (2)، 247-265. doi: 10.22092/jwra.2018.116969
سواری، مسلم؛ برفی­زاده، لیلا و اسدی، زینب (1400). آثار سرمایة اجتماعی بر دستیابی به امنیت غذایی در شرایط خشکسالی نمونة پژوهش: سکونت گاه های روستایی شهرستان دورود. جغرافیا و برنامه‌ریزی محیطی. 32 (4)، 1-28. doi: 10.22108/gep.2021.127786.1405
محمودی، سهراب؛ سیاری، محمدحسن؛ گلستانی فر، فرزانه؛ محرابی، پگاه و ابوالحسنی، حکیمه (1394، شهریور). تأثیرپذیری ارتفاع و شاخص سبزینگی برگ علف هرز سلمه‌تره (Chenopodium album L.) در شرایط آلودگی خاک با عناصر کروم و کادمیم. ششمین همایش علوم علف‌های هرز ایران، بیرجند، ایران.
References
AbdElgawad, Z., Gaurav, A., Hamed, B., Gerrit, H., Wael, W., Mohammed, A. M.; Asard, H., & Abuelsoud, W. (2020). Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environmental Pollution, 258(7), 113705. https://doi.org/10.1016/j.envpol.2019.113705.
Adolf, V. I., Jacobsen, S. E., & Shabala, S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 92, 43-54 https://doi.org/10.1016/j.envexpbot.2012.07.004.
Aghili, F., Khoshgoftarmanesh, A. H., Afyuni, M., & Schulin, R. (2009). Health risks of heavy metals through consumption of greenhouse vegetables grown in central Iran. Human and Ecological Risk Assessment. 15: 999-1015. https://doi.org/10.1080/10807030903153337.
Ahmadi Azar, F., Hassanlou, T., Imani, A. & Faizi Asl, V. (2014). Drought stress and application of mineral zeolite on the growth and some physiological parameters of Malva sylvestris. Plant research, 28(3), 459-474. (In Persian).
Alandia, G., Jacobsen, S.-E., Kyvsgaard, N. C., Condori, B., & Liu, F. (2016). Nitrogen sustains seed yield of quinoa under intermediate drought. Journal of Agronomy and Crop Science, 202(4), 281-291. https://doi.org/10.1111/jac.12155.
Amiryousefi, M., Tadayon, M. R., & Hoseinifard, M. S. (2022). Effect of Nitrogen and Phosphorus Bio Fertilizers on Some Seed Germination Traits of Two Cultivars of Quinoa under Salinity Stress. Desert Ecosystem Engineering, 8(24), 79-94. https://doi.org/10.22052/deej.2018.7.24.49. (In Persian).
 Aslam, M. U., Raza, M. A., Saleem, S., Waqas, M. F., Iqbal, M., Ahmad, R. & Haider, I. (2020). Improving strategic growth stage-based drought tolerance in quinoa by Rhizobacterial Inoculation. Communications in Soil Science and Plant Analysis. 1–16. https://doi.org/10.1080/00103624.2020.1744634.
Aziz, A., Akram, N. A., & Ashraf M. (2018). Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 123, 192-203. https://doi.org/10.1016/j.plaphy.2017.12.004.
Bhargava, A., Shukla, S., Srivastava, J., Singh, N., & Ohri, D. (2008). Chenopodium: a prospective plant for phytoextraction. Acta Physiologiae Plantarum, 30(1), 111-120. https://doi.org/10.1007/s11738-007-0097-3.
Bhat, J., Akhter, S. M., Singh, P., Navadagi, B., Tripathi, D., Dash, K., Solanke, U., Sonah, H., & Deshmukh, R. (2019). Role of silicon in mitigation of heavy metal stresses in crop plants. Plants. 8(3), 71-82. https://doi.org/10.3390/plants8030071.
Bilal, S., Shahzad, R., Imran, M., Jan, R., Kim, K., & Lee, I. (2020). Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products, 143(7), 111931. https://doi.org/10.1016/j.indcrop.2019.111931.
Cai, Z. Q., & Gao, Q. (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. Plant Biology, 20(1), 9-24. https://doi.org/10.1186/s12870-020-2279-8.
Cao, Y., Zou, L., Li, W., Song, Y., Zhao, G., & Hu, Y. (2020). Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. International Journal of Biological Macromolecules, 163, 55-65. https://doi.org/ 10.1016/j.ijbiomac.2020.06.241.
Cocozza, C., Pulvento, C., Lavini, A., Riccardi, M., d’Andria, R., & Tognetti, R. (2012). Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of quinoa (Chenopodium quinoa Willd.) grown in a Mediterranean-type agroecosystem. Journal of Agronomy and Crop Science, 199(4), 229-240. https://doi.org/10.1111/jac.12012.
Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B., & Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 146, 1-12. https://doi.org/10.1016/j.plaphy.2019.11.003.
Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology, 74, 21-31. https://doi.org/0.1016/j.copbio.2021.10.024.
Hassan, A., Khan, A., Kiyani, A., Mirza, C., Butt, T. A., Barros, R., Ali, B., Iqbal, M., & Yousef, S. (2021). Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environmental Research, 195(22), 48-56. https://doi.org/10.1016/j.envres.2021.110780.
Hinojosa, L., Gonzalez, J., Barrios-Masias, F., Fuentes, F., & Murphy, K. (2018). Quinoa abiotic stress responses: A review. Plants, 7(4), 106-138. https://doi.org/10.3390/plants7040106.
Hosseini, Y., Ramezani Moghadam, J., Nikpour, M. R., & Abdoli, A. (2017). Evaluation of water absorption functions under simultaneous drought and salinity stress conditions in tomato plants. Journal of Water Research in Agriculture, 32(2), 247-265. (In Persian).
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., & Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. International Journal of Molecular Sciences, 23(9), 5186.
Karimi, H., Mahdavi, S., & Asgari Lajayer, B. (2022). Insights on the bioremediation technologies for pesticide-contaminated soils. Environ Geochem Health, 44, 1329-1354. https://doi.org/10.1007/s10653-021-01081-z.
Khurshid, A. M., Asadi, A., & Hatami, A. (2020). Effect of drought stress on sugar beet breeding genotypes under greenhouse conditions. Journal of Crop Breeding, 12(34), 83-92. https://doi.org/10.29252/jcb.12.34.83. 
Lukic, N., Kukavica, B., Davidović-Plavšić, B., Hasanagić, D., & Walter J. (2020). Plant stress memory is linked to high levels of anti-oxidative enzymes over several weeks. Environmental and Experimental Botany, 104166. https://doi.org/10.1016/j.envexpbot.2020.104166.
Mahmoudi, M., Sayari, M. M., Golestanifar, F., Mehrabi, P., & Abolhasani, H. (2014, September). Effect of height and leaf greenness index of salma tere weed (Chenopodium album L.) in conditions of soil pollution with chromium and cadmium elements. 6th Iran Weed Science Conference, Birjand, Iran. (In Persian).
Podar, D., & Frans, J. M. (2021). The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. Plant, Cell & Environment, 45(3), 719-736. https://doi.org/10.1111/pce.14188.
Savari, M., Barfizdeh, L., & Asadi, Z. (2021). The effects of social capital on achieving food security in drought conditions. Research sample: rural settlements of Durood city. Quarterly Journal of Geography and Environmental Planning, 32, 1-28. (In Persian).
Sezgin, S. A., & Sanlier N. (2019). New generation plant for the conventional cuisine: quinoa (Chenopodium quinoa Willd.). Trends in Food Science and Technology, 86, 51-58. https://doi.org/10.1016/j.tifs.2019.02.039.
Sharma, P. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328, 18-26. https://doi.org/10.1016/j.biortech.2021.124835.
Soliman, M. M., El‐Deriny, D. S. S., Ibrahim, H., Zakaria, Y., & Ahmed, M. (2021). Suppression of root‐kot nematode Meloidogyne incognitaon tomato plants using the nematode trapping fungus Arthrobotrys oligospora Fresenius. Journal of Applied Microbiology, 131(5), 2402-2415. https://doi.org/10.1111/jam.15101.
Stoleru, V., Slabu, C., Vitanescu, M., Peres, C., Cojocaru, A., Covasa M., & Mihalache G. (2019). Tolerance of three quinoa cultivars (Chenopodium quinoa Willd.) to salinity and alkalinity stress during germination stage. Agronomy, 9(6), 287-301. https://doi.org/10.3390/agronomy9060287.
Tagliotti, M. E., Deperi, S. I., Bedogni, M. C., & Huarte, M. (2021). Genome‐wide association analysis of agronomical and physiological traits linked to drought tolerance in a diverse potatoes Solanum tuberosum panel. Plant Breeding, 140(4), 654-664. https://doi.org/10.1111/pbr.12938.
Taie, H. A. A., Seif El-Yazal, M. A., & Ahmed, S. M. A. (2019). Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant. Environmental Science and Pollution Research, 26, 22338-22350.  https://doi.org/10.1007/s11356-019-05555-7.
Tang, D., Wei, F., Qin, S., Khan, A., Kashif, M. H., & Zhou, R. (2019). Polyethylene glycol induced drought stress strongly influences seed germination root morphology and cytoplasm of different kenaf genotypes. Industrial Crops and Products, 137, 180-186. https://doi.org/10.1016/j.indcrop.2019.01.019.
Van Zanten, H. H. E., Van Ittersum, M. K., & De Boer, I. J. M. (2019). The role of farm animals in a circular food system. Global Food Security, 21, 18-22. https://doi.org/10.1016/j.gfs.2019.06.