Document Type : Research Paper

Authors

1 Department of Genetics and Plant Production, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. E-mail: M.r.dehghani@vru.ac.ir

2 Corresponding Author, Department of Plant Genetics and Breeding, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran. E-mail: Mozhgan.Hashemi@modares.ac.ir

3 Department of Genetics and Plant Production, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. E-mail: m.dahaji@vru.ac.ir

4 Department of Genetics and Plant Production, University of Shahrekord, Iran. E-mail: Shmohammadi@sku.ac.ir

10.22059/jci.2023.333507.2635

Abstract

Objective: It is quite effective to identify high-yielding and stable genotypes and evaluate different genotypes in various environmental conditions.
Methods: This study was conducted to evaluate the response of 12 imported faba bean genotypes with the application of gibberellic acid hormone (environmental factor) by the GGE-biplot method. For this purpose, genotypes were evaluated in a complete randomized design with three replications during autumn of 2018 in the research greenhouse of Shahrekord University. Gibberellic acid was sprayed at concentrations of 0, 10, and 30 ppm from the 2-leaf to flowering stages on a weekly basis.
Results: The analysis of variance showed that the effects of genotypes, gibberellic acid, and their interaction effects were significant in grain yield. The genotypes by the gibberellic acid sum of squares explained 22.33% of total grain yield variations. Using the GGE-biplot model, the first two components accounted for 86.5% of total grain yield variations due to the effect of genotype and the interaction effects between genotypes and gibberellic acid hormone.
Conclusion: Based on the analysis of GGE- biplots, the grain yield of genotypes C2, C4, C10, and C6 was higher than other genotypes. Furthermore, they had appropriate relative responses to the application of gibberellic acid hormone than other genotypes. Regarding the need for genotypes with high yield potential to increase in seed yield, they can be used for breeding this product. The eight remaining genotypes had lower grain yields with the most inappropriate responses to the application of gibberellic acid hormone, identified as undesirable genotypes.

Keywords

امینی، اشکبوس؛ قنادها، محمدرضا و عبدمیشانی، سیروس (1381). تنوع ژنتیکی و همبستگی بین صفات مختلف در لوبیای معمولی (.Phaseolus vulgaris L). علوم کشاورزی ایران. 33 (4)، 605-615. SID. https://sid.ir/paper/441096/fa
کانونی، همایون؛ فرایدی، یداله؛ صباغ پور، سیدحسین و سعید، علی (1395). ارزیابی اثر متقابل ژنوتیپ x محیط بر عملکرد دانه لاین‌های نخود (.Cicer arietinum L) در کشت زمستانه. مجله علوم زراعی ایران. 18 (1)، 63-75. SID. https://sid.ir/paper/57280/fa
سرپرست، رمضان؛ شیخ، فاطمه و سوقی، حبیب‌الله (1390). ارزیابی اثر متقابل ژنوتیپ و سال و تجزیه کلاستر عملکرد دانه در برخی لاین‌های باقلا (Vicia faba L.). پژوهش‌های حبوبات ایران. 2 (1)، 99-106. doi: 10.22067/ijpr.v2i1.12023.
 
References
Abdel, C. G., & Al-Rawi, I. M. T. (2011). Common vetch Vicia sativa L. response to gibberellic acid application (GA3), supplementary irrigation and its water stress critical stages. International Journal of Biosciences, 1(3), 29-38.
Amini, A., Ghanadha, M. R., & Abdmishani, S. (2002). Genetic variation and correlation between different traits in common bean. Agricultural Sciences, 33(4), 605-15. (In Persian).
Bora, R., & Sarma, C. (2006). Effect of gibberellic acid and cycocel on growth, yield and protein content of pea. Plant Sciences, 5(2), 324-330.
Dayan, J., Voronin, N., Gong, F., Sun, T-p., Hedden, P., Fromm, H., & Aloni, R. (2012). Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. The Plant Cell, 24(1), 66-79.
El-Shraiy, A. M., & Hegazi, A. M. (2009). Effect of acetylsalicylic acid, indole-3-bytric acid and gibberellic acid on plant growth and yield of Pea (Pisum sativum L.). Basic Applied Sciences, 3(4), 3514-3523.
Emongor, V. (2002). Effect of benzyladenine and gibberellins on growth, yield and yield components of common bean (Phaseolus vulgaris). Agricultural Science and Technology, 6(1), 65-72.
Erol, O., Enver, K., & Yusuf, D. (2018). Selection the best barley genotypes to multi and special environments by AMMI and GGE biplot models. Fresenius Environmental Bulletin, 27(7), 5179-5187.
Fadhil, A. H., & Almasoody, M. M. M. (2019). Effect of spraying with gibberellic acid on growth and yield of three cultivars of broad bean (Vicia faba L.). Ecology, 46, 85-89.
Gauch, Jr. H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46, 1488-1500.
Giovanaz, M. A., Fachinello, J. C., Spagnol, D., Weber, D., & Carra, B. (2016). Gibberellic acid reduces flowering and time of manual thinning in ‘Maciel’peach trees. Revista Brasileira de Fruticultura, 38, 1-9.
Hoseinifard, M. S., Javid, M. G., Allahdadi, I., & Soltani, E. (2018). The effect of hormone priming and corm weight on the yield of flowers and characteristics of daughter corms of saffron in the first year. Saffron agronomy and technology, 6(1). 3-15.
Ibrahim, M., Bekheta, M., El-Moursi, A., & Gaafar, N. (2007). Improvement of growth and seed yield quality of Vicia faba L. plants as affected by application of some bioregulators. Basic and Applied Sciences, 1(4), 657-666.
Javid, M. G., Hoseinifard, M. S., Allahdadi, I., & Soltani, E. (2022). Hormonal priming with BAP and GA3 induces improving yield and quality of saffron flower through promotion of carbohydrate accumulation in corm. Journal of Plant Growth Regulation, 1-11. https://doi.org/10.1007/s00344-020-10286-y
Kanouni, H., Farayedi,Y., Sabaghpour, S. H., & Saeid, A. (2016). Assessment of genotype×environment interaction effect on seed yield of chickpea (Cicer arietinum L.) lines under rainfed winter planting conditions. Crop Sciences, 18(1), 63-75. (In Persian).
Khan, M., Masroor, A., Gautam, C., Mohammad, F., Siddiqui, M., Naeem, H. M., & Nasir Khan, M. (2006). Effect of gibberellic acid spray on performance of tomato. Turkish Journal of Biology, 30(1), 11-16.
Lee, I. J. (2003). Practical application of plant growth regulator on horticultural crops. Horticulture Science, 10, 211-217.
Lin, S. Y., & Agehara, S. (2020). Exogenous gibberellic acid and cytokinin effects on budbreak, flowering, and yield of blackberry grown under subtropical climatic conditions. HortScience, 55(12), 1938-1945.
Maggio, A., Barbieri, G., Raimondi, G., & Pascale, S. De. (2010). Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Plant Growth and Regulation, 29(1), 63-72.
Miceli, A., Moncada, A., Sabatino, L., & Vetrano, F. (2019). Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy, 9(7), 382-404.
Moradi, P., & Dadras, A. R. (2021). Investigation of different populations of tall festuca (Festuca arundinacea) under rainfed and irrigation conditions using graphical analysis of GGE biplot. Iranian Journal of Field Crop Science, 51(4), 151-162.
Noor, F., Hossain, F., & Ara, U. (2017). Effects of gibberellic acid (GA3) on growth and yield parameters of French bean (Phaseolus vulgaris L.). Journal of the Asiatic Society of Bangladesh Science, 43(1),49-60.
Rady, M. M., Boriek, S. H. K., Abd El-Mageed, T. A., Seif El-Yazal, M. A., Ali, E. F., Hassan, F. A. S., & Abdelkhalik, A. (2021). Exogenous gibberellic acid or dilute bee honey boosts drought stress tolerance in Vicia faba by rebalancing osmoprotectants, antioxidants, nutrients, and phytohormones. Plants, 10(4), 1-23.
Rahman, A., Hussain, I., & Nabi, G. (2020). Exogenous gibberellic acid application influences on vegetative and reproductive aspects in gladiolus. Ornamental Horticulture, 26, 244-250.
Rastogi, A., Siddiqui, A., Mishra, B. K., Srivastava, M., Pandey, R., Misra, P., Singh, M., & Shukla, S. (2013). Effect of auxin and gibberellic acid on growth and yield components of linseed (Linum usitatissimum L.). Crop Breeding and Applied Biotechnology, 13, 136-143.
Sarparast, R., Sheikh, F., & Sowghi, H. A. (2011). Investigation of genotype and environment interaction and cluster analysis for seed yield in different lines of faba bean (Vicia faba L.). Pulses Research, 2(1), 99-106. (In Persian).
Sau, F., & Mı́nguez, M. I. (2000). Adaptation of indeterminate faba beans to weather and management under a Mediterranean climate. Field Crops Research, 66(1), 81-99.
Semida, W. M., Taha, R. S., Abdelhamid, M. T., & Rady, M. M. (2014). Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African Journal of Botany, 95, 24-31.
Shah, S., & Ahmad, I. (2006). Effect of gibberellic acid spray on growth, nutrient uptake and yield attributes during various growth stages of black cumin (Nigella sativa L.). Plant Sciences, 5, 881-884.
Sugiura, D., Sawakami, K., Kojima, M., Sakakibara, H., Terashima, I., & Tateno, M. (2015). Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Functional Plant Biology, 42(4), 397-409.
Temesgen, T., Keneni, G., Sefera, T., & Jarso, M., (2015). Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. The Crop Journal, 3(3), 258-68.
Thomas, S. G., Rieu, I., & Steber, C. M. (2005). Gibberellin metabolism and signaling. Vitamins & hormones, 72, 289-338.
Yan, W. (2002). Singular‐value partitioning in biplot analysis of multienvironment trial data. Agronomy, 94(5), 990-996.
Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Plant Science, 86(3), 623-645.