Document Type : Research Paper

Authors

1 Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. E-mail: nooshinderakhshan2014@gmail.com

2 Corresponding Author, Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. E-mail: hossein.alaei@vru.ac.ir

3 Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. E-mail: r.saberi@vru.ac.ir

4 Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. E-mail: sedaghati@vru.ac.ir

5 Department of Genetic and Plant Production, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. E-mail: rahimiasg@gmail.com

Abstract

Salinity can prevent the uptake of soil mineral ions due to the negative effect of sodium ions and disturbance of ion balance, but the use of Trichoderma biocompounds improves growth under salinity stress. To investigate the effect of four salinity-resistant Trichoderma strains on growth traits and mineral element uptake of eggplant seedlings under stress conditions, an experiment has been performed in a completely randomized factorial design with three replications in the greenhouse of Vali-e-Asr University of Rafsanjan during 2016-2017. The first factor is salinity in four levels including the control and concentrations of 8, 12, and 16 dS/m and the second factor is Trichoderma as T. aureoviride (T148-2, T189-4) and T. virens (T145, T133-1) as well as the control. The results show that under the influence of salinity, a significant decrease in growth traits takes place. At the highest salinity level, the average dry weight of roots and shoots is 50% and 72%, respectively. For stem diameter and seedling height, a 20% decrease is observed compared to the control. However, inoculation with Trichoderma improves these traits, resulting in a 1.6-fold increase in root dry weight (T142-8), a 2.7-fold increase in shoot dry weight (T133-1), and a 1.3-fold increase in seedling height (T189-4) in comparison to the control. The highest diameter increase could be observed in T142-8 strain by 38%. Using Trichoderma leads to significant changes in sugar, sodium, potassium, and calcium content. The results of this study show that Trichoderma can be a suitable biological agent to increase tolerance at high levels of salinity stress and improve the growth traits of eggplant seedlings.

Keywords

Abdullah, N. S., Doni, F., Mispan, M. S., Saiman, M. Z., Yusuf, Y. M., Oke, M. A., & Suhaimi, N. S. M. (2021). Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy, 11(12), 2559. https://doi.org/10.3390/agronomy11122559
Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, 6, 1-15. https://doi.org/10.3389/fpls.2015.00868
Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9(1), 43-50.
Akinci, I. E., Akinci, S., Yilmaz, K., & Dikici, H. (2004). Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealand Journal of Crop and Horticultural Science, 32(2), 193-200. https://doi.org/10.1080.01140671.2004.9514296
Alzahib, R. H., Migdadi, H. M., Al Ghamdi, A. A., Alwahibi, M. S., Ibrahim, A. A., & Al-Selwey, W. A. (2021). Assessment of morpho-physiological, biochemical and antioxidant responses of tomato landraces to salinity stress. Plants, 10(4), 696. https://doi.org/10.3390/plants10040696
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
Assaha, D.V., Ueda, A., & Saneoka, H. (2013). Comparison of growth and mineral accumulation of two solanaceous species, Solanum scabrum Mill. (huckleberry) and S. melongena L. (eggplant), under salinity stress. Soil Science and Plant Nutrition, 59(6), 912-920.  https://doi.org/10.1080/00380768.2013.858300
Atlassi Pak, V. (2018). Study of sodium accumulation in the leaves of cultivars sensitive to salt tolerance (Triticum aestivum L.), Plant Production, 41 (1), 43-56. (In Persian). https://doi.org/10.22055 / ppd.2017.19760.1405
Azarmi, R., Hajieghrari, B., & Giglou, A. (2011). Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10 (31), 5850-5855. https://doi.org/10.5897/AJB10.1600
Brotman, Y., Landau, U., Cuadros-Inostroza, Á., Takayuki, T., Fernie, A.R., Chet, I., Viterbo, A., & Willmitzer, L. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 9(3), e1003221. https://doi.org/10.1371/annotation/8b818c15-3fe0-4e56-9be2-e44fd1ed3fae
Chapman, M. A. (2019). Introduction: the importance of eggplant. In The eggplant genome. 1-10.
Coskun, D., Britto, D. T., & Kronzucker, H. J. (2010). Regulation and mechanism of potassium release from barley roots: an in planta 42 K+ analysis. New Phytology, 188(4), 1028-38.  https://doi.org/10.1111/j.1469-8137.2010.03436.x
Fattahi, M., Mohammadkhani, A., Shiran, B., Baninasab, B., Ravash, R., & Gogorcena, Y. (2021). Beneficial effect of mycorrhiza on nutritional uptake and oxidative balance in pistachio (Pistacia spp.) rootstocks submitted to drought and salinity stress. Scientia Horticulturae, 281, 109937.  https://doi.org/10.1016/j.scienta.2021.109937
Ferreira-Silva, S. L., Silveira, J., Voigt, E., Soares, L., & Viegas, R. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20(1), 51-59. https://doi.org/10.1590/S1677-04202008000100006
Guo, Q., Liu, L., & Barkla, B. J. (2019). Membrane lipid remodeling in response to salinity. International Journal of Molecular Sciences, 20(17), 4264. https://doi.org/10.3390/ijms20174264
Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014.701596. https://doi.org/10.1155/2014/701596
Hajlaoui, H., El Ayeb, N., Garrec, J. P., & Denden, M. (2010). Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products, 31, 122-130. https://doi.org/10.1016/J.INDCROP.2009.09.007
Hameed, A., Dilfuza, E., Abd-Allah, E.F., Hashem, A., Kumar, A., & Ahmad, P. (2014). Salinity stress and arbuscular mycorrhizal symbiosis in plants. In M. Miransari, (Ed.), Use of microbes for the alleviation of soil stresses, (Vol. 1, pp. 139-159). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-9466-9_7
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. https://doi.org/10.1038/nrmicro797
Hegazi, A. M., El-Shraiy, A. M., & Ghoname, A. (2015). Alleviation of salt stress adverse effect and enhancing phenolic anti-oxidant content of eggplant by seaweed extract. Gesunde Pflanzen, 67, 21-31. https://doi.org/10.1007/s10343-014-0333-x
Heuer, B., Meiri, A., & Shalevet, J. (1986). Salt tolerance of eggplant. Plant and Soil, 95(1), 9-13.
Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R., & Monte, E. (2021). Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens, 10(8), 991. https://doi.org/10.3390/pathogens10080991
Iqbal M., & Ashraf, M. (2013). Alleviation of salinity-induced perturbations in ionic and hormonal concentrations in spring wheat through seed preconditioning in synthetic auxins. Acta Physiologiae Plantarum. 35, 1093-1112. https://doi.org/10.1007/s11738-012-1147-z
Irigoyen, J.J., Einerich, D.W., & Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1), 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb087
Khalili, M., Naghavi, M., & Talebzadeh, S. (2020). Investigation of changes in morphological, physiological and biochemical traits in some canola cultivars under salinity stress. Iranian Journal of Crop Sciences (Iranian Agricultural Sciences), 51 (2), 15-28. (In Persian). https://doi.org/10.22059/ijfcs.2019.250429.654438
Khayamim, S., Noshad, H., Rajabi, A., & Jafari, R. (2021). Response of sugar beet multi-sprout genotypes to salinity stress. Environmental Stresses in Agricultural Sciences, 14 (1), 235-247. (In Persian). https://doi.org/10.22077/escs.2019.2664.1697
Klute, A. (1986). Methods of soil analysis. Madison, WI, USA: Soil Science Society of America.
Kumar, K., Manigundan, K., & Amaresan, N. (2017). Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology, 57 (2), 141-150. https://doi.org/10.1002/jobm.201600369
Laximi, R., Bisht, T. S., Upadhayay, R. G., & Kukreti, A. (2016). Selection of salinity tolerant Trichoderma isolates and evaluating their performance in alleviating salinity stress in rice (Oryzae sativa L.). National Academy of Agricultural Science. 34(6), 1869-1875.
Li, R. X., Cai, F., Pang, G., Shen, Q. R., Li, R., & Chen, W. 2015. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One, 10(6), 0130081. https://doi.org/10.1371/journal.pone.0130081
Lu, S., Li, T., & Jiang, J. (2010). Effects of salinity on sucrose metabolism during tomato fruit development. African Journal of Biotechnology, 9(6), 842-849. https://doi.org/10.5897/AJB09.1602
Ma, Y., (2019). Seed coating with beneficial microorganisms for precision agriculture. Biotechnology Advances, 37(7),107423. https://doi.org/10.1016/j.biotechadv.2019.107423
Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 1-13. https://doi.org/10.3390/horticulturae3020030
Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. London, UK:Academic Press.
Mastouri, F., Björkman, T., & Harman, G, E. (2012). Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molecular Plant Microbe Interactions, 25(9), 1264-1271. https://doi.org/10.1094/MPMI-09-11-0240
Mehrabi-Koushki M., Rouhani H., & Mahdikhani-Moghaddam E. (2012). Differential display of abundantly genes of Trichoderma harzianum during colonization of tomato-germinating seeds and roots. Current Microbiology, 65(5), 524-533. https://doi.org/10.1007/s00284-012-0189-
Mehrinfar, F., Nematzadeh, Q., Pirdashti, H., & Mobaser, H. (2014). The effect of salinity on ionic content, plant pigments and soluble sugars and starches of Aeluropus littoralis. New Agricultural Findings, 8 (31), 251-261. (In Persian).
Mei, X., Li, S., Li, Q., Yang, Y., Luo, X., He, B., Li, H., & Xu, Z. (2014). Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels. Ecotoxicology and Environmental Safety, 105, 59-64. https://doi.org/10.1016/j.ecoenv.2014.04.005
Mirkhani, F., & Alaei, H. (2015). Species diversity of indigenous Trichoderma from alkaline pistachio soils in Iran. Mycologia Iranica, 2(1), 22-37. https://doi.org/10.22043/mi.2015.14264
Oladosu, Y., Rafii, M. Y., Arolu, F., Chukwu, S. C., Salisu, M. A., Olaniyan, B. A., & Muftaudeen, T. K. (2021). Genetic diversity and utilization of cultivated eggplant germplasm in varietal improvement. Plants, 10(8), 1714. https://doi.org/10.3390/plants10081714
Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M., & Dursun, A. (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany, 137, 335-339. https://doi.org/10.1016/j.sajb.2020.10.031
Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. a review. Agronomy for Sustainable Development, 32(1), 181-200. https://doi.org/10.1007/s13593-011-0029-x
Raghami, M., Estaji, A., Bagheri, V., & Aryakia E. (2016). Effect of salinity stress and salicylic acid on some morphophysiological characteristics of eggplant (Solanum melongena var. Taki) in soilless culture. Journal of Soil and Plant interactions, 7(3), 77-87. (In Persion). http://jspi.iut.ac.ir/article-1-1218-fa.html
Ranjbar, Gh., & Pirasteh-Anosheh, H. (2015). A glance to the salinity research in Iran with emphasis on improvement of field crops production. Iranian Journal of Crop Sciences, 17(2), 165 -178. (In Persian).
Rasool, S., Ahmad, A., Siddiqi, T. O., & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 35, 1039-1050. https://doi.org/10.1007/s11738-012-1142-4
Repas, T. S., Gillis, D. M., Boubakir, Z., Bao, X., Samuels, G. J., & Kaminskyj, S. G. (2017). Growing plants on oily, nutrient-poor soil using a native symbiotic fungus. PloS One, 12(10), 0186704. https://doi.org/10.1371/journal.pone.0186704
Rouhani, N., Nemati, S., Moghadam, M., & Ardakanian, V. (2016). The effect of salinity stress on physiological characteristics and how to absorb sodium and potassium elements in shoots and tubers of three radish cultivars. Soil-Plant Relations (Science and Technology of Greenhouse Cultivation), 7 (27), 169-178. (In Persian). https://doi.org/10.18869/acadpub.ejgcst.7.27.169
Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50(2), 180-188. https://doi.org/10.1007/s11099-012-0002-1
Ryu, H., & Cho, Y. G. (2015). Plant hormones in salt stress tolerance. Journal of Plant Biology, 58(3), 147-155. https://doi.org/10.1007/s12374-015-0103-z
Saberi Riseh, R., Ebrahimi-Zarandi, M., Tamanadar, E., Moradi Pour, M., & Thakur, V. K. (2021). Salinity stress: toward sustainable plant strategies and using plant growth-promoting Rhizobacteria encapsulation for reducing it. Sustainability, 13(22), 12758. https://doi.org/10.3390/su132212758
Saeedipoor, S. (2017). Effect of salinity stress on yield, concentration and distribution of some elements in different organs of two rice cultivars (Oriza sativa L.). Crop Physiology Journal, 9 (36), 27-40. (In Persian).
Sharma A. K., & Sharma, P. (2020). Trichoderm : host pathogen interactions and applications - rhizosphere biology. Singapore: Springer.
Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
Sriram, S., Savitha, M. J., Rohini, H. S., & Jalali, S. K. (2013). The most widely used fungal antagonist for plant disease management in India, Trichoderma viride is Trichoderma asperellum as confirmed by oligonucleotide barcode and morphological characters. Current Science, 104, 1332-1340.
Taghinasab Darzi, M. (2012).  Effect of some Trichoderma spp. isolates on promoting growth of cucumber seedlings under greenhouse conditions. Journal of Soil and Plant Interactions, 3 (3), 85-92.
Unlukara, A., Kurunç, A., Kesmez, G. D., Yurtseven, E., & Suarez, D. L. (2010). Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage, 59(2), 203-214. https://doi.org/10.1002/ird.453
Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370-7390. https://doi.org/10.3390/ijms14047370
Wang, R., Chen, D., Khan, R.A.A., Cui, J., Hou, J., & Liu, T. (2021). A novel Trichoderma asperellum strain DQ-1 promotes tomato growth and induces resistance to gray mold caused by Botrytis cinerea. FEMS Microbiology Letters, 368(20), 140. https://doi.org/10.1093/femsle/fnab140
Wu, Q. S., Zou, Y. N., & He, X. H. (2013). Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Scientia Horticulturae, 160, 366-374. https://doi.org/10.1016/j.scienta.2013.06.011
Yang, R., Qin, Z., Wang, J., Zhang, X., Xu, S., Zhao, W., & Huang, Z. (2022). The interactions between arbuscular mycorrhizal fungi and Trichoderma longibrachiatum enhance maize growth and modulate root metabolome under increasing soil salinity. Microorganisms, 10(5), 1042.1-17. https://doi.org/10.3390/microorganisms10051042
Zahra, N., Raza, Z. A., & Mahmood, S. (2020). Effect of salinity stress on various growth and physiological attributes of two contrasting maize genotypes.  Brazilian Archives of Biology and Technology, 63. https://doi.org/10.1590/1678-4324-2020200072
Zhang, C., Wang, W., Hu, Y., Peng, Z., Ren, S., Xue, M., Liu, Z., Hou, J., Xing, M., & Liu, T. (2022). A novel salt-tolerant strain Trichoderma atroviride HN082102. 1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum. BMC Microbiology, 22(1), 1-14. https://doi.org/10.1186/s12866-022-02479-0
Zhang, H., Kim, M.S., Sun, Y., Dowd, S.E., Shi, H., & Paré, P.W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 21, 737-744. https://doi.org/10.1094/MPMI-21-6-0737
Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), p.100017. https://doi.org/10.1016/j.xinn.2020.100017
Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178. https://doi.org/10.1016/j.aoas.2020.09.003