Document Type : Research Paper


1 Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail:

2 Corresponding Author, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail:

3 Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran. E-mail:

4 Department of Horticulture, Faculty of Agriculture, Shiraz University, Shiraz, Iran. E-mail:

5 Department of Soil Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. E-mail:


Drought stress is one of the limiting factors of agriculture in many parts of the world, especially Iran. Understanding the mechanism behind drought stress’ effect on physiological and biochemical processes of genotypes is very useful for selecting and breeding genotypes compatible with Iranian conditions. For this purpose, the present study has been conducted in 2018-2019 in the Biotechnology Research Institute of Shiraz University to investigate the effect of drought stress on physiological and biochemical characteristics of both years’ old pomegranate seedlings of Wonderful cultivar in greenhouse conditions. Irrigation has been carried out at four levels of 100% (control), 75%, 55%, and 35% of field capacity for 50 days. The experiment is based on a completely randomized design with three replications. The results show that drought stress has significantly increased carotenoids, flavonoids, malondialdehyde, and proline. The relative leaf water content, cell membrane stability and anthocyanins has decreased, though there has been no significant difference in chlorophyll and glycine betaine levels between drought treatments. Also, the hydrogen peroxide (81%) and activity of superoxide dismutase (480%), catalase (96%), and ascorbate peroxidase (96%) in 35% of field capacity significantly has increased. According to the results of this study, especially the increase in proline and antioxidant enzymes under drought stress, tolerance mechanisms in pomegranate cultivar Wonderful can be associated with active osmotic regulation and active enzymatic antioxidant system.


Alexieva, V., Sergiev, I., Mapelli, S., & Karanova, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24(12), 1337-1344.
Anjum, N. A., Sharma, P., Gill, S. S., Hasanuzzaman, M., khan, E. A., Kachhap, K., Mohamed, A. A., Thangave P Devi, G. D., Vasudhevan, P., Sofo, A., Khan, N. A., Misra, A. N., Lukatkin, A. S., Singh, H. P., Pereira, E., & Tuteja, N. (2016). Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environmental Science and Pollution Research, 23, 19002–19029.
Bahantana, P., & Lazarovitch, N. (2010). Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress. Agriculture Water Management. 97, 715-722.
Bastam, N., Baninasab, B., & Ghobadi, C. (2012). Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Journal of Plant Growth Regulation, 69, 275-284.
Bates, L., Waldren, R., & Teare, I. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. Analytical Biochemistry, 44, 276-287.
Bompadre,  M. J., Silvani, V. A., Bidondo, L. F., Rios de Molina, M. D. C., Colombo, R. P., Pardo, A. G., & Godeas, A. M. (2014). Arbscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growning under different irrigation conditions. Botany, 92(3), 187-193.
Catola, S., Marino, G., Emiliani, G., Huseynova, T., Musayev, M., Akparov, Z., & Maserti, B. E. (2016). Physiological and metabolomic analysis of Punica granatum L. under drought. Planta, 243(2), 441-9. 10.1007/s00425-015-2414-1
Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1), 1-9.
Chin, L. (2007). Investigations into lead (Pb) accumulation in Symphytum officinale L.: A Phytoremediation Study. Ph.D Thesis, University of Canterbury, New Zealand.
Conceicao dos Santos, I.,  Furtado de Almeida, A. A., Priminho Pirovani, C., Gilberto, M., Costa, C., Santos da Conceicao, A., Soares, Filho, W. S.,  Coelho Filho, M. A., & Silva Gesteira, A. (2019). Physiological, biochemical and molecular responses to drought conditions in field-grown grafted and ungrafted citrus plants. Environmental and Experimental Botany, 37, 33-42.
Da-Li, G., li-yuan, L., Ming-jia, Y.,  Xiao-xia, SH., Li-juan, J., Hai-yan, L., Li-ping, W., Yan, Y., Ji-di, X., Cui-ying, L., Jian-tao, Y., Feng-wang, M., & Qing-mei, G. (2019). Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress. Journal of Integrative Agriculture, 18(6), 1280-1294.
Dhindsa, R. S., Dhindsa, P. P., &  Thorpe, T. A. (1981). Leaf senescence: correlated with increased level of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93-101.
 Doulati Baneh, H., Ahmadaali, J.,  & Rasouli, M. (2019). Effects of drought stress on some morphophysiological traits of some iranian and foreign commercial grape varieties. Pomology research, 4(2), 127-142.
Ebtedaie, M., & Shekafandeh, A. (2017). Antioxidant and carbohydrate changes of two pomegranate cultivars under deficit irrigation stress. Spanish Journal of Agricultural Research, 14(4), 8-9.
Eftekhari Shahabadi, A. (2017). Interaction of drought stress and foliar application of salicylic acid and kaolin on morphophysiological and biochemical responses of two pomegranate cultivars. Master Thesis, Shiraz University. (In Persian)
Esna-Ashari, M., & Hassani Moghadam, E. (2021). Selection of six commercial iranian pomegranates (Punica granatum L.) cultivars for drought stress tolerance based on some leaf nutrient elements. Horticultural Science, 35(3), 355-365. (In Persian)
Gao, T.,  Zhang. Z., Liu, X., Wu. Q., Chen, Q., Liu, Q., Nocker, S.V.,  Ma, F., & li, C. (2020). Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiology and Biochemistry, 148, 260-272.
Gholami, M., Rahemi, M., Kholdebarin, B., & Rastegar, S. (2012). Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae, 148, 109-117.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinert in abiotic stress in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium  compounds. Plant  and Soil, 70, 303-307.
Haddad, R., & Mokhlesian, S. (2015). Effect of silicon on the peroxidase gene expression and morphological traits of barley under drought stress. Journal of Cell and Tissue, 6(4), 451-460. (In Persian)
Hanci, F., & Cebeci, E. (2014). Investigation of proline, chlorophyll and carotenoids changes under drought stress in some onion (Allium Cepa L.) cultivars. Turkish  Journal Of Agricultural And Natural Sciences, 2, 1499-1504.
Hassani Moghadam, E., Esna-Ashari, M., & Rezaeinejad, A. (2015). Effect of drought stress on some physiological characteristics in six commercial iranian pomegranate (Punica granatum L.) Cultivars. Plant Products Thechnology, 15(1), 1-11. (In Persian).
He, J. D,. Zou, Y. N., Wu, Q. S., & Kca, K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 256, 108745.
Health, R. I., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125(1), 189-198.
Jain, S. M., Al-Khayri, J. M., & Johnson, D. V. (2011). Date Palm Biotechnology. Springer Science and Business Media, Heidelberg, London, New York, 743 p.
Kafi, M., Borzoee, A., Salehi, M., Kamandi, A., Masoumi, A., & Nabati, J. (2010). Physiology of Environmental Stresses in Plant. Mashhad university Jahad. (In Persian)
Karimi, S., Karami, H., Vahdati, K., & Mokhtassi-Bidgoli, A. (2020). Antioxidative responses to short-term salinity stress induce drought tolerance in walnut. Scientia Horticulturae, 267, 1-10.
Karimi, S., Yadollahi, A., & Arzani, K. (2013). Responses of almond genotypes to osmotic stress induced in vitro. Journal of Nuts, 4(4), 1-7. (In Persian)
Khan, M. A., Gul, B., & Weber, D.J. (2004). Action of plant growth regulators and salinity on seed germination of ceratoides lanata. Canadian Journal of Botany, 82, 37-42.
Liu, J., lin Deng, J., & Tian, Y. (2020). Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress. Phytochemistry, 171(6), 112226.
Lu, S., Wang, Z., Niu, Y., Guo, Z., & Huang, B. (2008). Antioxidant responses of radiation-induced dwarf mutants of bermudagrass to drought stress. Journal of the American Society for Horticultural Science, 133(3), 360-366.
Lutts, S., Kinet, J., & Bouharmont, J. (1996). Nacl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398.
Marraccini, P., Vinecky, F., Alves, G. S. C., Ramos, H. J. O., Elbelt, S., & Vieira, N. G. (2012). Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. Journal of Experimental Botany, 63(11), 4191-4212.
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.
Nishida, Y., Yamashita, E., & Wataru, M. (2007). Quenching activities of common hydrophilic and lipophilic antioxidants against Singlet Oxygen Using Chemiluminescence Detection System. Carotenoid Science (An Interdisciplinary Journal of Research on Carotenoids), 11, 16-20.
Ozden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163-168.
Pakzad, R., Fatehi, F., Kalantar, M., & Maleki, M. (2019). Evaluating the antioxidant enzymes activities, lipid peroxidation and proteomic profile changing in UCB-1 pistachio rootstock leaf under drought stress. Scientia Horticulturae, 256 (108617), 1-12.
Parvin, P.,  Khezri, M.,  & Tavasoliyan, I. (2014). Effects of drought stress on some morphological, physiological and biochemical parameters of persian walnut seedling (Juglans regia L.). Journal of Plant Production Research, 21(3), 1-25. (In Persian)
Pena, M. E., Artés-Hernández, F., Aguayo, E., Martínez-Hernández, G. B., Galindo, A., Artes, F., & Gomez, P. A. (2013). Effect of sustained deficit irrigation on physicochemical properties, bioactive compounds and postharvest life of pomegranate fruit (cv. ‘Mollar de Elche’). Postharvest Biology and Technology, 86, 171-180.
Rad, M. H.,  Asghari, M. R., & Asareh, M. H. (2015). The Effects of Drought Stress on Growth, Yield and Fruit Quality of  Pomegranate (Punica granatum L.) cv. Rababe Niriz Under Dry Climate Condition. Seed and Plant Production Journal, 35(1), 75-90. (In Persian)
Sharma, A., Wang, J., Xu, D., Tao, S., Chang, S., Yan, D., Li, Z., Yuan, H,., & Zheng, B. (2020). Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of the Total Environment, 713(136675), 44 p.
Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227.
Taiz., L., & Zeiger, E. (2006). Plant physiology. Fourth Edition. Sinauer Associates. Inc: Publishers Sunderland Massachusetts, 738 p.
Tavousi, M., Kaveh, F., Alizadeh, A., Babazadeh, H., & Tehranifar, A. (2014). Integrated Impact of salinity and drought stress on quantity and quality of pomegranate (Punica granatum L.). Bulletin of Environment, Pharmacology and Life Sciences, 4(1), 146-151.
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidatative stress and some antioxidative systems in acid raine treated bean plants. Plant Science, 51, 59-99.
Wang, Z., Li, G., Sun, H., Li. M., Guo, Y., Zhao, Y., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11),
Xiaoyue, c., Jianan, X., Bo, Zh., Chengcheng, Ch., Yunyun, T., Pingying, Zh., &  Jianxia, Zh. (2020). Physiological change and screening of differentially expressed genes of wild Chinese Vitis yeshanensis and American Vitis riparia in response to drought stress. Scientia Horticulturae, 266, 109140.
Zarafshar, M., Akbarinia, M., Askari, H., Hosseini, S. M., Rahaie, M., Struve, D., & Striker, G. G. (2014). Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana). Biotechnology Agronomy Society and Environment, 18(3), 353-366.