Document Type : Research Paper

Authors

1 Department of Agricultural Sciences, Payame Noor University, Tehran, Iran. E-mail: m.alashti@pnu.ac.ir

2 Department of Agricultural Sciences, Payame Noor University, Tehran, Iran. E-mail: Sh.kazemi@pnu.ac.ir

3 Corresponding Author, Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran. E-mail: Moghadam.mojde@shahroodut.ac.ir

Abstract

Drought stress is one of the most important factors in reducing yield and seed quality of rapeseed. The present study chiefly tries to evaluate the effect of application of brassinosteroid on seed yield, oil content, oil yield, and fatty acids profile of rapeseed genotypes under late-season water deficit stresseen considered. A factorial split-plot test has been conducted in a randomized complete blocks design for two cultivation years (2017-2019) in Karaj, Iran. Experimental treatments include two levels of brassinosteroid (i.e., 0 (control) and 0.1μmol) and two levels of irrigation (full irrigation (control) and withholding irrigation from flowering stage) as factorial in the main plots, and rapeseed genotypes (Nafis, Ahmadi, Okapi, Nima, and Niloufar) as subplots. The levels of oleic acid and linoleic acid in the conditions of application of brassinosteroids have been 0.7% and 11% in full irrigation conditions and 1.1% and 6.4% in withholding irrigation conditions, respectively, compared to the control on the other hand, the use of brassinosteroids in withholding irrigation conditions reduce palmitic acid by 14% compared to the control. Okapi genotype has had the highest and lowest erucic acid and grain yield in irrigation conditions, respectively. Under drought stress conditions, the highest seed yield (3112.3 kg/ha) and the lowest amount of erucic acid (0.26%) belonged to Niloufar genotype. The use of brassinosteroids in both irrigation treatments improve the quality of fatty acids and Niloufar cultivar is recommended in both irrigation conditions

Keywords

خیاط مقدم، مژده سادات؛ غلامی، احمد، شیرانی راد، امیرحسین؛ برادران فیروزآبادی، مهدی و عباس‌دخت، حمید (1400 الف). اثر سیلیکات پتاسیم و تنش خشکی آخر فصل بر خصوصیات فیزیولوژیکی کلزا، به‌زراعی کشاورزی، 23 (4)، 776-761. https://doi.org/10.22059/jci.2021.306872.2424
خیاط مقدم، مژده سادات؛ غلامی، احمد؛ شیرانی راد، امیرحسین؛ برادران فیروزآبادی، مهدی و عباس‌دخت، حمید (1400 ب). بررسی صفات زراعی ژنوتیپ‎های بهاره کلزا در شرایط تنش خشکی آخر فصل و محلول‏ پاشی سیلیکات پتاسیم. به‌زراعی کشاورزی، 14 (3)، 663-649. https://doi.org/10.22077/escs.2020.2723.1787
 
References
Aghdasi, S., Agha Alikhani, M., Modarres-Sanavy, S. A. M., & Kahrizi, D. (2021). Exogenously used boron and 24-epibrassinolide improved oil quality and mitigate late-season water deficit stress in camelina. Industrial Crops and Products171, 113885.
Ahammed, G. J., Gao, C. J., Ogweno, J. O., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., & Yu, J. Q. (2012). Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L. Ecotoxicology and environmental safety80, 28-36. https://doi.org/10.1016/j.ecoenv.2012.02.004
Al-Barrak, K. M. (2006). Irrigation interval and nitrogen level effects on growth and yield of canola (Brassica napus L.). Scientific Journal of King Faisal University, 7(1), 87-102.
Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., ... & Nazir, U. (2017). Growth and development responses of crop plants under drought stress: A review. Zemdirbyste104(3), 267-276.
Anjum, S. A., Tanveer, M., Hussain, S., Tung, S. A., Samad, R. A., Wang, L., ... & Shahzad, B. (2016). Exogenously applied methyl jasmonate improves the drought tolerance in wheat imposed at early and late developmental stages. Acta Physiologiae Plantarum, 38(1), 25.
Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and crop science197(3), 177-185.
Ashkiani, A., Sayfzadeh, S., Shirani Rad, A. H., Valadabadi, A., & Hadidi Masouleh, E. (2020). Effects of foliar zinc application on yield and oil quality of rapeseed genotypes under drought stress. Journal of Plant Nutrition43(11), 1594-1603.
Aslam, M. N., Nelson, M. N., Kailis, S. G., Bayliss, K. L., Speijers, J., & Cowling, W. A. (2009). Canola oil increases in polyunsaturated fatty acids and decreases in oleic acid in drought‐stressed Mediterranean-type environments. Plant Breeding128(4), 348-355.
Assefa, Y., Roozeboom, K., & Stamm, M. (2014). Winter canola yield and survival as a function of environment, genetics, and management. Crop Science54(5), 2303-2313.
Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant physiology and biochemistry47(1), 1-8.
Bhati, J., Chaduvula, P. K., Kumar, S., & Rai, A. (2013). Phylogenetic analysis and secondary structure prediction for drought tolerant Cap binding proteins of plant species. Indian journal of agricultural sciences, 83(1), 21-5.
Cartea, M. E., & Velasco, P. (2008). Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochemistry reviews7(2), 213-229.
Chen, Z., Wang, Z., Yang, Y., Li, M., & Xu, B. (2018). Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae228, 1-9.
Ciura, J., & Kruk, J. (2018). Phytohormones as targets for improving plant productivity and stress tolerance. Journal of Plant Physiology229, 32-40.
Damirchi, S. A., Savage, G. P., & Dutta, P. C. (2005). Sterol fractions in hazelnut and virgin olive oils and 4, 4′-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. Journal of the American Oil Chemists' Society82(10), 717-725.
Enjalbert, J. N., Zheng, S., Johnson, J. J., Mullen, J. L., Byrne, P. F., & McKay, J. K. (2013). Brassicaceae germplasm diversity for agronomic and seed quality traits under drought stress. Industrial Crops and Products47, 176-185.
Estaji, A., & Niknam, F. (2020). Foliar salicylic acid spraying effect’on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agricultural Water Management234, 106116.
Eyni-Nargeseh, H., AghaAlikhani, M., Shirani Rad, A.H., Mokhtassi-Bidgoli, A. & Modarres Sanavy, S.A.M. (2020). Late season deficit irrigation for water-saving: selection of rapeseed (Brassica napus) genotypes based on quantitative and qualitative features. Archives of Agronomy and Soil Science, 66(1), 126-137.
Farahani, S., Majidi Heravan, E., Shirani Rad, A. H., & Noormohammadi, G. (2019). Effect of potassium sulfate on quantitative and qualitative characteristics of canola cultivars upon late-season drought stress conditions. Journal of Plant Nutrition42(13), 1543-1555.
Gruszka, D. (2020). Exploring the brassinosteroid signaling in monocots reveals novel components of the pathway and implications for plant breeding. International journal of molecular sciences21(1), 354.
Guo, R., Qian, H., Shen, W., Liu, L., Zhang, M., Cai, C. & Wang, Q. (2013). BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis. Journal of experimental botany64(8), 2401-2412.
Hamzei, J., & Soltani, J. (2012). Deficit irrigation of rapeseed for water-saving: Effects on biomass accumulation, light interception and radiation use efficiency under different N rates. Agriculture, ecosystems & environment, 155, 153-160.
Hatzig, S. V., Nuppenau, J. N., Snowdon, R. J., & Schießl, S. V. (2018). Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC plant biology18(1), 1-13.
Hosseinpour, M., Ebadi, A., Habibi, H., Nabizadeh, E., & Jahanbakhsh, S. (2020). Enhancing enzymatic and nonenzymatic response of Echinacea purpurea by exogenous 24-epibrassinolide under drought stress. Industrial Crops and Products146, 112045.
Jabbari, H., Khosh Kholgh Sima, N. A., & Shirani Rad, A. H. (2017). Changes in the oil fatty acids composition of rapeseed cultivars under drought stress conditions. Applied Field Crops Research30(3), 66-81.
Javid, M. G., Hoseinifard, M. S., Allahdadi, I., & Soltani, E. (2022). Hormonal priming with BAP and GA3 induces improving yield and quality of saffron flower through promotion of carbohydrate accumulation in corm. Journal of Plant Growth Regulation, 1-11.
Khan, M. A., Ashraf, M. Y., Mujtaba, S. M., Shirazi, M. U., Khan, M. A., Shereen, A., Mumtaz, S., Agil Siddiqui, M. A., & Kaleri, G. M. (2010). Evaluation of high yielding canola type Brassica genotypes/mutants for drought tolerance using physiological indices as screening tool. Pakistan Journal of Botany, 42(6), 3807-3816.
Khayat Moghadam, M. S., Gholami, A., Shirani rad, A. H., BaradaranFiroozabadi, M., & Abbasdokht, H. (2021a). The effect of Potassium Silicate and Late-Season Drought Stress on the Physiological Characters of Canola. Journal of Crops Improvement23(4), 776-761. https://dx.doi.org/10.22059/jci.2021.306872.2424. (In Persian).
Khayat Moghadam, M. S., Gholami, A., Shirani rad, A. H., BaradaranFiroozabadi, M., & Abbasdokht, H. (2021). The effect of Potassium Silicate and Late-Season Drought Stress on the Physiological Characters of Canola. Journal of Crops Improvement23(4), 776-761. https://dx.doi.org/10.22077/ESCS.2020.2723.1787. (In Persian).
Khodabin, G., Lightburn, K., Hashemi, S. M., Moghadam, M. S. K., & Jalilian, A. (2022). Evaluation of nitrate leaching, fatty acids, physiological traits and yield of rapeseed (Brassica napus) in response to tillage, irrigation and fertilizer management. Plant and Soil, 1-18.
Khodabin, G., Tahmasebi‐Sarvestani, Z., Rad, A. H. S., & Modarres‐Sanavy, S. A. M. (2020). Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chemistry & Biodiversity17(2), e1900399.
Khodabin, G., Tahmasebi-Sarvestani, Z., Rad, A. H. S., Modarres-Sanavy, S. A. M., Hashemi, S. M., & Bakhshandeh, E. (2021). Effect of late-season drought stress and foliar application of ZnSO4 and MnSO4 on the yield and some oil characteristics of rapeseed cultivars. Journal of Soil Science and Plant Nutrition21(3), 1904-1916.
Konuskan, D. B., Arslan, M., & Oksuz, A. (2019). Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi Journal of Biological Sciences26(2), 340-344.
Li, B., Zhang, C., Cao, B., Qin, G., Wang, W., & Tian, S. (2012). Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids43(6), 2469-2480.
Makkar, H. P., Siddhuraju, P., & Becker, K. (2007). Plant secondary metabolites. Totowa, NJ, USA: Humana Press.
Pokotylo, I.V., Kretynin, S.V., Khripach, V.A., Ruelland, E., Blume, Y.B., & Kravets, V.S. (2014). Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus. Plant Growth Regulation .73, 9–17. https://doi.org/10.1007/s10725-013-9863-y.
Rathnakumar, A.L., & Sujatha, M. (2022). Breeding Major Oilseed Crops: Prospects and Future Research Needs. In Accelerated Plant Breeding. Cham: Springer. https://doi.org/10.1007/978-3-030-81107-5_1.
Sadura, I., & Janeczko, A. (2022). Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. International Journal of Molecular Sciences23(1), 342.
Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S. A., Sharma, A., Song, H., Rehman, S. U., & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and environmental safety147, 935–944. https://doi.org/10.1016/j.ecoenv.2017.09.066
Shawon, R. A., Kang, B. S., Lee, S. G., Kim, S. K., Lee, H. J., Katrich, E. & Ku, Y. G. (2020). Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa L.). Food chemistry308, 125657.
Shu, S., Tang, Y., Yuan, Y., Sun, J., Zhong, M., & Guo, S. (2016). The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiology and Biochemistry107, 344-353.
Sidhu, G.P.S. & Bali, A.S. (2022). Plant responses to drought stress: role of brassinosteroids. In brassinosteroids in plant developmental biology and stress tolerance, 201-216. Academic Press.
Singh, A., Dwivedi, P., Kumar, V., & Pandey, D. K. (2021). Brassinosteroids and their analogs: Feedback in plants under in vitro condition. South African Journal of Botany143, 256-265.
Talaat, N. B., & Shawky, B. T. (2013). 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum35(3), 729-740.
Talaat, N. B., Shawky, B. T., & Ibrahim, A. S. (2015). Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environmental and Experimental Botany113, 47-58.
Tanveer, M., Shahzad, B., Sharma, A., & Khan, E. A. (2019). 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiology and Biochemistry135, 295-303.
Tanveer, M., Shahzad, B., Sharma, A., Biju, S., & Bhardwaj, R. (2018). 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiology and Biochemistry130, 69-79.
Tohidi Moghaddam, H. R. T, Zahedi, H., & Ghooshchi, F. (2011). Oil quality of canola cultivars in response to water stress and super absorbent polymer application. Pesquisa Agropecuaria Tropical. 41, 579–586, https://doi.org/10.5216/pat.v41i4.13366.
Vardhini, B. V., Sujatha, E., & Rao, S. S. R. (2011). Studies on the effect of brassinosteroids on the qualitative changes in the storage roots of radish. Asian and Australasian Journal of Plant Science and Biotechnology5(1), 27-30.
Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., & Yu, J. Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant physiology150(2), 801-814.
Yue, J., You, Y., Zhang, L., Fu, Z., Wang, J., Zhang, J., & Guy, R. D. (2019). Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robinia pseudoacacia L. seedlings. Journal of Plant Growth Regulation38(2), 669-682.
Zafari, M., Ebadi, A., Jahanbakhsh, S., & Sedghi, M. (2020). Safflower (Carthamus tinctorius) biochemical properties, yield, and oil content affected by 24-epibrassinosteroid and genotype under drought stress. Journal of agricultural and food chemistry68(22), 6040-6047.
Zhao, G., Xu, H., Zhang, P., Su, X., & Zhao, H. (2017). Effects of 2, 4-epibrassinolide on photosynthesis and Rubisco activase gene expression in Triticum aestivum L. seedlings under a combination of drought and heat stress. Plant Growth Regulation81(3), 377-384.