Document Type : Research Paper

Authors

1 Agronomy Department, Damghan branch, Islamic Azad University, Damghan, Iran. E-mail: amirmizani@yahoo.com

2 Corresponding Author, Department of Agriculture, production and technology of herbal medicines research centre, Damghan Branch, Islamic Azad University, Damghan, Iran. E-mail: sinaki@iau.ac.ir

3 Department of Agriculture, production and technology of herbal medicines research centre, Damghan Branch, Islamic Azad University, Damghan, Iran. E-mail: sh.rezvan@iau.ac.ir

4 Filed and Horticultural Crops Research Department, Agricultural and Natural Resources Research and Education Center of Semnan Province (Shahrood), Agricultural Research, Education and Extension Organization (AREEO), Shahrood, Iran. E-mail: m.abedini@areeo.ac.ir

5 Department of Agriculture, production and technology of herbal medicines research centre, Damghan Branch, Islamic Azad University, Damghan, Iran. E-mail: al.damavandi1347@ iau.ac.ir

Abstract

This experiment works on the physiological, growth, and yield responses of sesame to the application of potassium nano-fertilizers, chitosan, and fulvic acid under drought stress in Semnan Agricultural and Natural Resources Research Center as a factorial split-plot based on randomized complete block design with three replications in 2019. The experimental treatments include drought as the main plot (normal irrigation, irrigation cut offin 70 and 60 BBCH as moderate, and severe stress, respectively) and potassium nano-fertilizer (0, 1.5, and 2.5 per thousand) and foliar application (control, chitosan, fulvic acid, and 50% of chitosan+ fulvic acid) as sub-plots.Application of potassium nano-fertilizer under normal and stress conditions significantly cuts chlorophyll b and total, leaf area index, number of capsules, 1000-seed weight, and oil percentage.The highest grain yield belongs to the application of 1.5 and 2.5 per thousand nano fertilizers, using fulvic acid alone or in combination with 50% chitosan (2516, 2277.5, 2506.6, and 2313.2 kg/ha, respectively). The highest oil content has been in 1.5 and 2.5 per thousand nano fertilizer application under normal irrigation, which has increased 13.2% and 15.4%, respectively. Foliar application of fulvic acid with nano potassium fertilizer (1.5 per thousand) under severe drought stress show the highest activity of antioxidant enzymes catalase, peroxidase, ascorbate peroxidase, and superoxide dismutase. In general, the results show that the application of 1.5 per thousand nano potassium fertilizer and combined foliar application of chitosan and fulvic acid under severe drought by improving physiological traits, manage to modify the adverse effects of drought, increasing growth, yield, and quality indices of sesame.

Keywords

Alaviasl, S. A., Mansourifar, S., Modarres Sanavy, S. A. M., Sadatasilan, K., Tabatabaei, S. A., & Moradi Ghahderijani, M. (2016). Effect of chitosan and zeolite on growth and yield of sesame (Sesamum indicum L.) under different irrigation conditions in Yazd. Environmental Stresses in Crop Sciences, 9, 163-172. (in Persian). https://doi.org/10.22077/escs.2016.362
Ali, E., El-Shehawi, A., Ibrahim, O., Abdul-Hafeez, E., Moussa, M., & Hassan, F. (2021). A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161, 166-175. https://doi.org/10.1016/j.plaphy.2021.02.008
Aqaei, P., Weisany, W., Diyanat, M., Razmi, J., & Struik, P. C. (2020). Response of maize (Zea mays L.) to potassium nano-silica application under drought stress. Journal of Plant Nutrition, 43, 1205-1216. https://doi.org/10.1080/01904167.2020.1727508
Arnon, D. I. (1949). Copper enzymes in isolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
Arslan, H., Ekin, Z., & Hatipoglu, H. (2018). Performances of sesame genotypes (Sesamum indicum L.) with different seed shell colors in semi-arid climate conditions. Fresenius Environmental Bulletin, 27, 8139-8146.
Asadi, H., Baradaran, R., Seghatoleslami, M., & Mousavi, S. (2020). Evaluation of drought tolerance in some sesame (Sesamum indicum L.) genotypes based on stress tolerance indices. Iranian Journal of Field Crops Research, 18,413-433. (in Persian). https://doi.org/10.22067/jcesc.2020.88165
Ayoubizadeh, N., Laei, G., Amini dehaghi, M., Masoud Sinaki, J., & Rezvan Bidokhti, S. (2020). Effect of drought stress and foliar nutrition of iron nano-chelate and fulvic acid on grain yield and fatty acids composition in seed oil of two sesame cultivars. Journal of Crops Improvement, 22, 231-243. (in Persian). https://doi.org/10.22059/jci.2020.281730.2220
Ayoubizadeh, N., Laei, G., Amini, D. M., Masood, S. J., & Rezvan, S. (2019). Effect of foliar application of iron nano-chelate and folic acid on seed yield and some physiological traits of sesame cultivars under drought tension conditions. Crop Physiology Journal, 40, 55-74. (in Persian)
Bahrampoor, M., Dehestani-Ardakani, M., Shirmardi, M., & Gholamnezhad, J. (2019). Effect of different substrates and nano potassium fertilizer on morpho-physiological characteristics of pot Marigold (Calendula officinalis L.) under drought stress. Iranian Journal of Horticultural Science and Technology, 20, 65-78. (in Persian)
Barat Zadeh, S., & Babaei Nejad, T. (2019). Effect of potassium nano-chelate and ascorbic acid on grain yield and some qualitative characteristics of cowpea (Vigna unguiculata L., Kamran cultivar). Journal of Plant Production Sciences, 9,149-160. (in Persian)
Bates, L. S., Waldern, R. P., & Teave, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Beauchamp, C., & Fridovich, I. (1971). Superoxide Dismutase. Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Bellaloui, N., Ebelhar, M. W., Gillen, A. M., Fisher, D. K., Abbas, H. K., Mengistu, A., Reddy, K. N., & Paris, R. L. (2011). Soybean seed Protein, and fatty acids are altered by S and S+N fertilizers under irrigated and non-irrigated environments. Agricultural Science, 2(4), 465-476. https://doi.org/10.4236/as.2011.24060
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Carrière, S. D., Martin-StPaul, N. K., Cakpo, C. B., Patris, N., Gillon, M., Chalikakis, K., Doussan, C., Olioso, A., Babic, M., & Jouineau, A. (2020). The role of deep vadose zone water in tree transpiration during drought periods in karst settings–Insights from isotopic tracing and leaf water potential. Science of The Total Environment, 699,134332. https://doi.org/10.1016/j.scitotenv.2019.134332
Chance, B., & Maehly, A. C. (1955). Assay of catalase and peroxidase. Methods in Enzymology 2, 764-775. https://doi.org/10.1002/9780470110171.ch14
Fracasso, A., Telò, L., Lanfranco, L., Bonfante, P., & Amaducci, S. (2020). Physiological beneficial effect of Rhizophagus intraradices inoculation on tomato plant yield under water deficit conditions. Agronomy, 10, 71. https://doi.org/10.3390/agronomy10010071
Gonzalez, E. M., De Ancos, B., & Cano, M. P. (1999). Partial characterization of polyphenol oxidase activity in raspberry fruits. Journal of Agricultural and Food Chemistry, 47, 4068-4072. https://doi.org/10.1021/jf981325q
Heng, Y., Xavier, C. F., Lars, P.C., & Kai, G. (2012). Chitosan oligosaccharides promote the content of polyphenols in Greek Oregano (Origanum vulgare ssp. hirtum). Journal of Agriculture and Food Chemistry, 60, 136-143. https://doi.org/10.1021/jf204376j
Kazemi, E., Ganjali, H. R., Mehraban, A., & Ghasemi, A. (2021). Yield and biochemical properties of grain sorghum (Sorghum bicolor L. Moench) affected by nano-fertilizer under field drought stress. Cereal Research Communications, 31, 1-9. https://doi.org/10.1007/s42976-021-00198-2
Kermani, S. G., Saeidi, G., Sabzalian, M. R., & Gianinetti, A. (2019). Drought stress influenced sesamin and sesamolin content and polyphenolic components in sesame (Sesamum indicum L.) populations with contrasting seed coat colors. Food Chemistry, 289, 360-368. https://doi.org/10.1016/j.foodchem.2019.03.004
Khordadi-Varamin, J., Fanoodi, F., Sinaki, J. M., Rezvan, S., & Damavandi, A. (2020). Foliar application of chitosan and nano-magnesium fertilizers influence on seed yield, oil content, photosynthetic pigments, antioxidant enzyme activities of sesame (Sesamum indicum L.) under water-limited conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48, 2228-2243. https://doi.org/10.15835/nbha48411852
Kouighat, M., Hanine, H., El Fechtali, M., & Nabloussi, A. (2021). First report of sesame mutants tolerant to severe drought stress during germination and early seedling growth stages. Plants, 10, 1166. https://doi.org/10.3390/plants10061166
Li, H., Guo, Q., Jing, Y., Liu, Z., Zheng, Z., Sun, Y., Xue, Q., & Lai, H. (2020). Application of Streptomyces pactum Act12 enhances drought resistance in wheat. Journal of Plant Growth Regulation, 39,122-132. https://doi.org/10.1007/s00344-019-09968-z
Mahdavi Khorami, A., Masoud Sinaki, J., Amini Dehaghi, M., Rezvan, S., & Damavandi, A. (2020). Sesame (Sesame indicum L.) biochemical and physiological responses as affected by applying chemical, biological, and nano-fertilizers in field water stress conditions. Journal of Plant Nutrition, 43, 456-475. https://doi.org/10.1080/01904167.2019.1683189
Mahdavi, K. A., Masoud, S. J., Amini, D. M., Rezvan, S., & Damavandi, A. (2018). Effect of nano, chemical, and biological fertilizers on the yield and quality of sesame seeds under different irrigation regimes. Journal of Crops Improvement, 20(1), 263-284. (in Persian). https://doi.org/10.22059/jci.2018.231648.1718
Mahsavi Khorami, A., MasoudSinaki, J., Amini Dehaghi, M., Rezvan, S., & Damavandi, A. (2019). The Effect of Using Nitrogen and Potassium Fertilizers and Irrigation Regimes on Grain Yield Related traits of Sesame (Sesamum indicum L.). Isfahan University of Technology-Journal of Crop Production and Processing, 9(1), 173-188. (in Persian). https://doi.org/10.29252/jcpp.9.1.173
Malekpoor, F., Salimi, A., & Ghasemi Pirbalouti, A. (2016). Effect of bioelicitor of chitosan on physiological and morphological properties in purpule basil (Ocimum basilicum L.) under water deficit. Journal of Plant Ecophysiology, 27(8), 53-71. (in Persian)
Mikkelsen, R. (2018). Nanofertilizer and nanotechnology: a quick look. Better Crops with Plant Food, 102, 18-19. https://doi.org/10.24047/BC102318
Moaveni, P., Ebrahimi, A., & Farahani, H. A. (2010). Physiological growth indices in winter rapeseed (Brassica napus L.) cultivars as affected by drought stress at Iran. Journal of Cereals and Oilseeds, 1, 11-16. (in Persian)
Mwenye, O. J., Van Rensburg, L., Van Biljon, A., & Van der Merwe, R. (2016). The role of proline and root traits on selection for drought-stress tolerance in soybeans: a review. South African Journal of Plant and Soil, 33, 245-256. https://doi.org/10.1080/02571862.2016.1148786
Poudineh, Z., Moghadam, Z. G., & Mirshekari, S. (2015). Effects of humic acid and folic acid on sunflower under drought stress. Biological Forum, An International Journal, 7(1), 451-454.
Pourghasemian, N., Moradi, R., Naghizadeh, M., & Landberg, T. (2020). Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract. Agricultural Water Management, 231,105997. https://doi.org/10.1016/j.agwat.2019.105997
Saedi, F., Sirousmehr, A., & Javadi, T. (2020). Effect of nano-potassium fertilizer on some morpho-physiological characters of peppermint (Mentha piperita L.) under drought stress. Journal of Plant Research (Iranian Journal of Biology), 33, 35-45. (in Persian)
Salamati, N., & Danaie, A. (2020). Investigation of drought satress indices in sesame surface water deficit. Iranian Journal of Soil and Water Research, 51, 949-959. (in Persian). https://doi.org/10.22059/ijswr.2020.289522.668324
Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., Handa, N., Kapoor, D., Yadav, P., & Khanna, K. (2020). Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 39, 509-531. https://doi.org/10.1007/s00344-019-10018-x
Shehzad, M. A., Nawaz, F., Ahmad, F., Ahmad, N., & Masood, S. (2020). Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicology and Environmental Safety, 187, 109841. https://doi.org/10.1016/j.ecoenv.2019.109841
Statistical Center of Ministry of Agriculture Jihad. (2020). Crop statistics. Agricultural Research, Education and Extension Organization Publisher, Iran.
Sultana, S., Islam, M., Khatun, M., Hassain, M., & Huque, R. (2017). Effect of foliar application of oligo-chitosan on growth, yield and quality of tomato and eggplant. Asian Journal of Agricultural Research, 11, 36-42. https://doi.org/10.3923/ajar.2017.36.42
Wendel A (1981). Glutathione peroxidase. Methods in Enzymology, 77, 325-333. 
Zarei, A., Masoud Sinaki, J., Amini Dehaghi, M., & Damavandi, A. (2020). Evaluation of biochemical and agronomic traits of sesame cultivars under application of phosphorus nano-chelate and chitosan fertilizers under irrigation cut-off. Environmental Stresses in Crop Sciences, 14, 471-483. (in Persian). https://doi.org/10.22077/escs.2019.2036.1503