Document Type : Research Paper


1 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences and ‎Natural Resources University, Sari, Iran.‎ E-mail:

2 Corresponding Author, Department‎‏ ‏of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences and ‎Natural Resources University, Sari, Iran.‎ E-mail:

3 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences ‎and Natural Resources University, Sari, Iran.‎ E-mail:

4 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences ‎and Natural Resources University, Sari, Iran.‎ E-mail:


In order to evaluate the ability of forage sorghum (Sorghum bicolor L.) to remediate the heavy metal cadmium with biochar and Pseudomonas putida, a factorial experiment has been conducted based on completely randomized design accomplished in greenhouse conditions with four replications at Sari Agricultural Sciences and Natural Resources University, in the summer of 2019. Results show that the presence of cadmium in the medium of sorghum reduce the dry weight of root and shoot. However, adding biochar and bacterial inoculation significantly increase the mentioned traits. Bioconcentration factor and bioaccumulation factor have increased from 25 to 100 mg of cadmium, when the highest shoot bioaccumulation factor (2.31) is observed at a concentration of 100 mg Cd per kg soil and in the simultaneous application of Biochar and Pseudomonas putida, which is a significant increase of 28.33% compared to the control. The lowest translocation factor of sorghum (1.000) is related to non-application of biochar, non-inoculation of Pseudomonas putida and without cadmium contamination, itslef reduced by 20% compared to the control, while the highest translocation factor (1.94) is observed at a concentration of 25 mg of cadmium per kg of soil and treatment of non-application of biochar and non-inoculation of Pseudomonas putida. Plant tolerance index has decreased by increasing cadmium concentration, while the use of biochar and inoculation of Pseudomonas putida has increased this index when the highest tolerance index (1.22) is related to the treatment of combined use of biochar and bacteria with no cadmium, increased by 22% compared to non-application of biochar and non-inoculation bacteria. As the tolerance index of forage sorghum in all concentrations of cadmium is more than 0.60, this plant can be classified in the highly-tolerant group to the heavy metal cadmium stress and sorghum could be used for cadmium phytoremediation.


Al-Wabel, M. I., Usman, A. R. A., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, S., & Al-Omran, A. (2015). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22, 503-511.
Alzahrani, Y., Alharby, H. F., Hakeem, K. R., & Alsamadany, H. (2020). Modulating effect of EDTA and SDS on growth, biochemical parameters and antioxidant defense system of Dahlia variabilis grown under cadmium and lead-induced stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 906-923.
Amjad Khan, M., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment, 601-602, 1591-1605.
Antoniadis, V., Levizou, E., Shaheen, S. M., Sik Ok, Y., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review. Earth-Science Reviews, 171, 621-645.
Aricak, B., Cetin, M., Erdem, R., Sevik, H., & Cometen, H. (2020). The usability of Scotch pine (Pinus sylvestris) as a biomonitor for traffic-originated heavy metal concentrations in Turkey. Polish Journal of Environmental Studies, 29(2), 1-7.
Barghi, A., Gholipoori, A., Ghavidel, A., & Sedghi, M. (2020). Changes in seed oil yield and its components of black mustard (Brassica nigra L.) as affected by rhizobacteria and growth regulators under cadmium stress conditions. Journal of Crop Ecophysiology, 13(4), 555-570. (In Persian)
Biria, M., Moezzi, A. A., & AmeriKhah, H. (2017). Effect of sugarcane bagasse made biochar on maize plant growth, grown in lead and cadmium contaminated soil. Journal of Water and Soil, 31(2), 609-626. (In Persian)
Catav, S. S., Genc, T. O., Oktay, M. K., & Kucukakyuz, K. (2020). Cadmium toxicity in wheat: Impacts on element contents, antioxidant enzyme activities, oxidative stress, and genotoxicity. Bulletin of Environmental Contamination and Toxicology, 104, 71-77.
Cluis, C. (2004). Junk-greedy greens: phytoremediation as a new option for soil decontamination. Journal of Biotechnology, 2, 60-67. Retrieved from
Ghorbani, M., Karimian, N. A., & Zarei, M. (2017). Influence of liquid organic fertilizer on growth, cadmium and macronutrients uptake of Spinach (Spinacea oleracea L.) in a cadmium polluted soil. Journal of Soil and Water Conservation, 42(3), 235-249. (In Persian)
Han, T., Zhao, Z., Bartlam, M., & Wang, Y. (2016). Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. Environmental Science and Pollution Research, 23, 21219-21228.
He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846-855.
Herlina, L., Widianarko, B., & Sunoko H. R. (2020). Phytoremediation potential of Cordyline fruticosa for lead contaminated soil. Journal Pendidikan IPA Indonesia, 9(1), 42-49.
Hesse, C., Schulz, F., Bull, C. T., Shaffer, B. T., Yan, Q., Shapiro, N., Hassan, K. A., Varghese, N., Elbourne, L. D. H., Paulsen, I. T., Kyrpides, N., Woyke, T., & Loper, J. E. (2018). Genome-based evolutionary history of Pseudomonas spp. Environmental Microbiology, 20(6), 2142-2159.
Hou, X., Teng, W., Hu, Y., Yang, Z., Li, C., Scullion, J., Guo, Q., & Zheng R. (2020). Potential phytoremediation of soil cadmium and zinc by diverse ornamental and energy grasses. BioResources, 15(1), 616-640.
Hussain, F., Hussain, I., Ali Khan, A. H., Muhammad, Y. S., Iqbal, M., Soja, G., Reichenauer, T. G., Zeshan., & Yousaf, S. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80-88.
Kapur, D., & Singh, K. J. (2019). Zinc alleviates cadmium induced heavy metal stress by stimulating antioxidative defense in soybean [Glycine max (L.) Merr.] crop. Journal of Applied and Natural Science, 11(2), 338-345.
Kaur, A., & Kumar, P. (2020). Effect of biofertilizers on the plant height and leaf area in Sorghum vulgare grown under lead toxic soil. Journal of Pharmacognosy and Phytochemistry, 9(4), 1707-1712. Retrieved from
Khare, P., Dilshad, U., Rout, P. K., Yadav, V., & Jain, S. (2013). Plant refuses driven biochar: Application as metal adsorbent from acidic solutions. Arabian Journal of Chemistry, 10, 3054-3063.
Kos, B., Grcman, H., & Lestan, D. (2003). Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant and Soil Environmental, 49, 548-553.
Kumar, A., Kumar, R., Kumari, M., & Goldar, S. (2020). Enhancement of plant growth by using PGPR for a sustainable agriculture: A review. International Journal of Current Microbiology and Applied Sciences, 9(2), 152-165.
Lux, A., Sottníkova, A., Opatrna, J., & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Plant Physiology, 120, 537-545.
Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kenelly, E. D. (2001). A fern that hyper accumulates arsenic. Nature, 409, 579-582.
Ma, Q. J., Sun, M. H., Lu, J., Hu, D. G., Kang, H., You, C. X., & Hao, Y. J. (2020). Phosphorylation of a malate transporter promotes malate excretion and reduces cadmium uptake in apple. Journal of Experimental Botany, 71(12), 3437-3449.
Mohammed Ali, A. S., Ahmed, H. A. M., Emara, H. A.  E., Janjua, M. N., & Alhafez, N. (2019). Estimation and bio-availability of toxic metals between soils and plants. Polish Journal of Environmental Studies, 28(1), 15-24. http://doi.org10.15244/pjoes/81690
Motesharezadeh, B., & Savaghebi, GH. (2011). Study of sunflower plant response to cadmium and lead toxicity by usage of PGPR in a calcareous soil. Journal of Water and Soil, 25(5), 1069-1079. (In Persian)
Nazarian, H., Amouzgar, D., & Sedghianzadeh, H. (2016). Effects of different concentrations of cadmium on growth and morphological changes in basil (Ocimum basilicum L.). Pakistan Journal of Botany, 48(3), 945-952.
Piacentini, D., Ronzan, M., Fattorini, L., DellaRovere, F., Massimi, L., Altamura, M. M., & Falasca, G. (2020). Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots. Plant Physiology and Biochemistry, 151, 729-742.
Pidlisnyuk, V., Mamirova, A., Pranaw, K., Shapoval, P. Y., Trogl, J., & Nurzhanova, A. (2020). Potential role of plant growth-promoting bacteria in Miscanthus x giganteus phytotechnology applied to the trace elements contaminated soils. International Biodeterioration and Biodegradation, 155, 105103-105113.
Schuuck, M., & Greger, M. (2020). Plant traits related to the heavy metal removal capacities of wetland plants. International Journal of Phytoremediation, 22(4), 427-435.
Soltani Toolarood, A. S., Eivazi Nay, M., Ghavidel, A., Abbaszadeh Dehaji, P., & Goli Kalanpa, E. (2019). Isolation, screening and evaluation of plant growth stimulating traits of Cd and Pb resistant microorganisms. Applied Soil Research, 7(3), 111-123. (In Persian)
Tsuboi, K., Shehzad, T., Yoneda, J., Uraguchi, S., Ito, Y., Shinsei, L., Morita, S., Rai, H., Nagasawa, N., Asari, K., Suzuki, H., Itoh, R., Saito, T., Suzuki, K., Takano, I., Takahashi, H., Sakurai, K., Watanabe, A., Akagi, H., Tokunaga, T., Itoh, M., Hattori, H., Fujiwara, T., Okuno, K., Tsutsumi, N., & Satoh-Nagasawa, N. (2017). Genetic analysis of cadmium accumulation in shoots of sorghum landraces. Crop Science, 57(1), 22-31.
Ur Rahman, S. H., Qi, X., Zhang, Z., Ashraf, M. N., Du, Z., Zhong, Y. L., Mehmood, F., Ur Rahman, S., & Shehzad, M. (2020). The effect of silicon foliar and root application on growth, physiology, and antioxidant enzyme activity of wheat plants under cadmium toxicity. Applied Ecology and Environmental Research, 18(2), 3349-3371.
Valizadeh Ghale Beig, A., Nemati, S. H., Emami, H., & Aroie, H. (2020). The effect of cutflower-rose waste biochar on morphological traits and heavy metals in lettuce (Lactuca sativa L. cv. Syaho). Science and Technology of Greenhouse Culture, 10(4), 21-35. (In Persian) 
Volke, D.C., Calero, P., & Nikel, P. I. (2020). Pseudomonas putida. Trends in Microbiology, 28(16), 512-513.
Wu, J., Kamal, N., Hao, H., Qian, C., Liu, Z., Shao, Y., Zhong, X., & Xu, B. (2019). Endophytic Bacillus megaterium BM18-2 mutated for cadmium accumulation and improving plant growth in hybrid Pennisetum. Biotechnology Reports, 24, 374-382.
Zhang, W. H., Cai, Y., Tu, C., & Ma, Q. L. (2002). Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Environmental Science, 300, 167-177.