Alam, M. Z., Braun, G., Norrie, J., & Hodges, D.M. (2013). Effect of Ascophyllum extract application on plant growth, fruit yield and soilmicrobial communities of strawberry. Canadian Journal of Plant Science, 93(1), 23-36.
Ali, N., Farrell, A., Ramsubhag, A., & Jayaraman, J. (2016). The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of Applied Phycology, 28(2), 1353-1362. doi:10.1007/s10811-015-0608-3.
Ali, S., Chattha, M. U., Hassan, M. U., Khan, I., Chattha, M. B., Iqbal, B., Rehman, M., Nawaz, M., & Amin, M. Z. (2020). Growth, Biomass Production, and Yield Potential of Quinoa (Chenopodium quinoa Willd.) as Affected by Planting Techniques Under Irrigated Conditions. International Journal of Plant Production, 14, 427-441. https://doi.org/10.1007/s42106-020-00094-5
Amiryousefi, M., Tadayon, M. R., & Hoseinifard, M. S. (2019). Effect of Nitrogen and Phosphorus Bio Fertilizers on Some Seed Germination Traits of Two Cultivars of Quinoa under Salinity Stress. Desert Ecosystem Engineering Journal, 8(24), 79-94. http://dx.doi.org/%2010.22052/deej.2018.7.24.49
Anwar, M. R., Mckenzie, B. A., & Hill, G.D. (2003). The effect of irrigation and sowing date on crop yield and yield components of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate sub humid climate. Journal of Agricultural Science, 141, 259-271.
Arioli, T., Mattner, S. W., & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of Applied Phycology, 27(5), 2007-2015. https://doi:10.1007/s10811-015-0574-9
Awadalla, A., & Morsy, A. S. M. (2017). Influence of planting dates and nitrogen fertilization on the performance of quinoa genotypes under Toshka Conditions. Egyptian Journal of Agronomy, 39, 27-40.
Boehme, M., Schevtschenko, J. & Pinker, I. (2005) Iron supply of cucumbers in substrate culture with humate. Acta Horticulturae, 41(1), 329-335.
Calvo, P., Nelson, L., & Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3-41.
Cimrin, K. M., Türkmen, Ö., Turan, M., & Tuncer B (2010). Phosphorus and humic acid application alleviate salinity stress of pepper seedling. African Journal of Biotechnology, 9, 5845-5851.
Doweidar, M. M., & Kamel, A. S. (2011). Using of quinoa for production of some bakery products (gluten-free). Egyptian Journal of Nutrition, 2, 21-52.
Eisvand, H. R., Sharafi, A., & Ismaeili, A. (2013). Effects of hydro and osmopriming in different temperatures on germination and seedling growth of Satureja khuzistanica Jamzad. under drought stress. Iranian Journal of Medicinal and Aromatic Plants, 29 (2), 343-357. (In Persian)
Elewa, T. A., Sadak, M. S., & Dawood, M. G. (2017). Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International, CIGR Journal Special Issue, 245-254. https://cigrjournal.org/index.php/Ejounral/article/view/4539/0
El-Sayed, A. B., Shehata, S. A., & Taha, S. S. (2018) Algae extract overcoming the adverse effects of saline stress in hydroponic grown tomato plants. Journal of Food, Agriculture and Environment, 16, 92-99.
Faheed, F.A., & Fattah, Z.A. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture and Social Sciences, 4, 165-169.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress, effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185212.
Fuentes, F., Bazile, D., Bhargava, A., & Martínez, E.A. (2012). Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. Journal of Agricultural Science, 150, 702-716.
Guttieri, M. J., Stark, J. C., Brien, K. & Souza, E. (2006). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science, 41, 327-335.
Hagh-Parast, M., Maleki Farahani, S., Masoud Sinaki, J., & Zare, G.H. (2012). Reduction of negative effects of dry tension and stress in chickpea with the application of Humic acid and seaweed extract. Production of Agricultural Plants in Environmental, 1, 59-71.
HaghParast, M., Maleki Farahani, S., Sinaki, J. M., & Zarei, G. H. (2012). Mitigation of drought stress in chickpea through application of humic acid and seaweed extract. Crop Production in Environmental Stress, 4(1), 59-71 (In Persian).
Hanafy Ahmed, A. H., Darwish, E., Hamoda, S. A. F., & Alobaidy, M. G. (2013). Effect of putrescine and humic acid on growth, yield and chemical composition of cotton plants grown under saline soil conditions. American-Eurasian Journal of Agricultural & Environmental Sciences, 13(4), 479-497.
Hernández-Herrera, R.M., Santacruz-Ruvalcaba, F., Ruiz-Lopez, M.A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26, 619-628.
Hirose, Y., Fujita, T., Ishiic, T., & Ueno, N. (2010). Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry, 119(4), 1300-1306.
Jacobsen, S. E. (2003). The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19 (1-2), 167-177.
Karakurt, Y., Unlu, H., & Padem, H. (2009). The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agriculturae Scandinavica Section B Plant Soil Science, 59(3), 233-237.
Khan, A. H., Mujtaba, S. M., & Khanzada. B. (1999). Response of growth, water relation and solute accumulation in wheat genotypes under water deficit. Pakistan Journal of Botany, 31, 461-468.
Khan, W., Rayirath, U., Subramanian, S., Jithesh, M., Rayorath, P., Hodges, D. M., Critchley, A., Craigie, J., Norrie, J., & Prithiviraj, B. (2009) Seaweed extracts as biostimulants of plant growth and development, Journal of Plant Growth Regulation, 28, 386-399, https://doi.org/10.1007/s00344-009-9103-x
Lawlor, D. W., & Cornic. G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environment, 25(2), 275-294.
Li, Y., & Mattson, N. S. (2015). Effect of seaweed extract application rate and method on post-production life of petunia and tomato transplants. Hort Technology, 25(4), 505-510.
Ludwig-Muller, J. (2000). Indole-3-butyric acid in plant growth and development. Plant Growth Regulation, 2(3), 219-230.
Maliro, M. F. A., Guwela, V. F., Nyaika J., & Murphy, K. M. (2017). Preliminary studies of the performance of quinoa (Chenopodium quinoa Willd.) genotypes under irrigated and rainfed conditions of Central Malawi. Frontiers in Plant Science, 8, 1-9.
Matsubara, K., Ishihara, K., Mizushina, Y., Mori, M., & Nakajima, N. (2004). Anti-angiogenic activity of quercetin and its derivatives. Letters in Drug Design and Discovery, 1, 329-333.
Movludi, A., Ebadi, A., Jahanbakhsh, S., Davari, M. & Parmoon, G.H. (2014). The effect of water deficit and nitrogen onthe antioxidant enzymes activity and quantum yield of barley (Hordeum vulgare L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, 398-404.
Nardia, S., Pizzeghelloa, D., & Muscolob, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology & Biochemistry, 34, 1527-1536.
Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371-376.
Ogungbenle, H. N. (2003). Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International Journal of Food Science and Nutrition, 54, 153-158.
Rathore, S. S., Chaudhary, D. R., Boricha, G. N., Ghosh, A., Bhatt, B. P., Zodape, S. T., & Patolia, J. S. (2009). Effect of seaweed extract on the growth, yield and nutrition uptake of soybean (Glycine max) under rain fed conditions. South African Journal of Botany, 75, 351-355.
Rouphael, Y., & Colla, G. (2018). Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture, Frontiers in Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655
Ruiz, K. B., Aloisi, I., Del Duca, S., Canelo, V., Torrigiani, P., & Silva, H. (2016). Salares versus coastal ecotypes of quinoa: salinity responses in Chilean landraces from contrasting habitats. Plant Physiology and Biochemistry, 101, 1-13. doi: 10.1016/j.plaphy. 2016.01.010
Russo, R. O., & Berlyn, G. P. (1990). The use of organic biostimulants to help low input sustainable agriculture. Journal of Sustainable Agriculture, 1(2), 19-42.
Sadak, M. S., & Dawood, M. G. (2014) Role of Ascorbic Acid and α Tocopherol in Alleviating Salinity Stress on Flax Plant (Linum usitatissimum L.). Journal of Stress Physiology and Biochemistry, 10, 93-111.
Saruhan, V., Kusvuran, A., & Babat, S. (2011). The effect of different humic acid fertilization on yield and yield components performances of common millet (Panicum miliaceum L.). Scientific Research and Essays, 6(3), 663-669.
Shamshiri, S., Jafari, R., Soltani, S., & Ramezani, N. (2014). Dust Detection and Mapping in Kermanshah Province Using MODIS Satellite Imagery. Iranian Journal of Applied Ecology, 3(8), 29-42
Tohidi Moghadam, H. R., Khalafi Khamene, M., & Zahedi, H. (2014). Effect of humic acid foliar application on growth and quantity of corn in irrigation withholding withholding at different growth stages. Maydica Journal, 59, 124-128.
Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S., & Wollenweber, B. (2014). Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Journal of Experimental Botany, 362, 1-16.
Zhang, X., & Ervin, E. H. (2004). Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Science, 44, 1737-1745.