Bagherzadeh Homaee, M., & Ehsanpour, A. A. (2015). Physiological and biochemical responses of potato (Solanumtuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Indian Journal of Plant Physiology, 20(4), 353-359.
Ben Rejeb, K., Abdelly, C., & Savoure, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278-284.
Boxall, A., Tiede, K., Chaudhry, Q., & Aitken, R. (2007). Current and future predicted exposure to engineered nanoparticles. Science of the Total Environment, 390, 396-409.
Carocho, M., & Ferreir,a I. C. (2013). A review on antioxidants, pro-oxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51, 15-25.
Chung, I. M., Rekha, K., & Rajakumar, G. (2018) M. Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd. Biotechnology, 8(10), 412.
Dewez, D., Dautremepuits, C., & Jeandet, P. (2003). Effects of methanol on photosynthetic processes and growth of Lemnagibba. Photochemistry and Photobiology, 78, 420-424.
Geisler-Lee, J., Wang, Q., & Yao, Y. (2013). Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 7(3), 323-337.
Gerami, M., Ghorbani, A., & Karimi, S. (2018). Role of salicylic acid pretreatment in alleviating cadmium-induced toxicity in Salvia officinalis L. Iranian Journal of Plant Biology, 10(1), 81-95.
Ghorbani, A., Razavi, S. M., & Ghasemi Omran, V. O. (2018b). Piriformosporaindica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanumlycopersicum L.). Plant Biology, 20(4), 729-736.
Ghorbani, A., Razavi, S. M., & Ghasemi Omran, V.O. (2018a). Piriformosporaindica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russian Journal of Plant Physiology, 65(6), 898-907.
Guo, N., Cheng, F., &Wu, J. (2014). Anthocyanin biosynthetic genes in Brassica rapa. BMC Genomics, 15(1), 426.
Hatami, M., Kariman, K., & Ghorbanpour, M. (2016). Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Science of the Total Environment, 571, 275-291.
Hediat, M., & Salama, H. (2012). Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3(10), 190-197.
Hsiao, I. L., Hsieh, Y. K., & Wang, C. F. (2015). Trojan-Horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environmental Science and Technology, 49(6), 3813-3821.
Jahani, S., Saadatmand, S., & Mahmoodzadeh, H. (2019). Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L. Biologia, 1-13.
Jiang, H.S., Li, M., & Chang, F.Y. (2012). Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodelapolyrhiza. Environmental Science & Technology, 31, 1880-1886.
Ke, M., Qu, Q., & Peijnenburg, W. J. G. M. (2018). Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Science of the Total Environment. 644, 1070-1079.
Khan, N., & Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-Nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18(3), 211-221.
Kowalska, I., Pecio, L., & Ciesla, L. (2014). Isolation, chemical characterization, and free radical scavenging activity of phenolics from Triticumaestivum L. aerial parts. Journal of Agricultural and Food Chemistry, 62(46), 11200-8.
Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment, 407(19), 5243-5246.
Lajayera, B. A., Ghorbanpour, M., & Nikabadi, S. (2017). Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety, 145, 377-390.
Lim, J. H., Park, K. J., & Kim, B. K. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrumesculentum M.) sprouts. Food Chemistry, 135(3), 1065-1070.
Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution. 150(2), 243–250.
Matthaus, B., & Ozcan, M. M. (2011). Fatty acids, tocopherol, and sterol contents of some Nigella species seed oil. Czech Journal of Food Sciences, 29, 145-150.
Navarro, E., Piccapietra, F., & Wagner, B. (2008). Toxicity of silver nanoparticles to Chlamydomonasreinhardtii. Environmental Science & Technology, 42(23), 8959-8964.
Oukarroum, A., Bras, S., & Perreault, F. (2012). Inhibitory effects of silver nano-particles in two green algae, Chlorella vulgaris and Dunaliellatertiolecta. Ecotoxicology and Environmental Safety, 78, 80-85.
Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712-1720.
Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminum complexation reaction for flavonoid content assay. Food Analytical Methods, 7, 1776-1782.
Qian, H., Peng, X., & Han, X. (2013). Comparison of the toxicity of silver nanoparticles and silver ion on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25(9), 1947-1955.
Rastogi, A., Zivcak, M., & Tripathi, D. K. (2019). Phytotoxic effect of silver nanoparticles in Triticumaestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica, 57(1), 209-216.
Rico, C. M., Morales, M. I., & Barrios, A. C. (2013). Effect of cerium oxide nanoparticles on the quality of rice (Oryzasativa L.) grains. Journal of Agricultural and Food Chemistry, 61(47), 11278-11285.
Salvatori, E., Fusaro, L., & Gottardini, E. (2014). Plant stress analysis: application of prompt, delayed chlorophyll fluorescence and 820 nm modulated reflectance. Insights from independent experiments. Plant Physiology and Biochemistry, 85,105-113.
Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2-3), 337-354.
Thuesombat, P., Hannongbua, S., & Akasit, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302-309.
Tripathi, D. K., Singh, S., & Singh, V. P. (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110, 70-81.
Vishwakarma, K., Shweta Upadhyay, N., & Singh, J. (2017). Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Frontiers in Plant Science, 8, 1501.
Yang, Y., Xu, S., & Xu, G. (2019). Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles. Science of the Total Environment, 647, 1088-1096.
Yin, L., Cheng, Y., & Espinasse, B. (2011). More than the ions: the effects of silver nanoparticles on Loliummultiflorum. Environmental Science & Technology, 45(6), 2360-2367.
Zhang, W., Li, Y., & Niu, J. (2013). Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir, 29(15), 4647-4651.