Document Type : Research Paper

Authors

1 Former Ph.D. Student, Department of Soil Science and Engineering, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.

2 Professor. Department of Soil Science and Engineering, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.

Abstract

The present study evaluates the effect of various application methods of mostly applied antibiotics in agriculture (gentamicin, oxytetracycline, penicillin) at different concentrations on root and shoot growth indices and number of rhizobial nodules of chickpea plant and the count of total bacteria, fungi, and coliforms in the soil around the plant root after a growth period of 60 days in greenhouse as a split-plot design. Application of antibiotics, even gentamicin, raises plant shoot dry weight, compared to the control, with the lowest weight of 0.98 g/pot observed in the control (without antibiotic). Root dry weight in penicillin-applied treatments, especially at higher concentrations has been the highest (1.1 g/pot), and the lowest in gentamicin-applied treatments, especially when applied as seed coating (0.48 g/pot). In total, antibiotic application decreases the root to shoot ratio compared to the control. Application of all antibiotics increase soil bacterial count in the pots after 60 days in comparison with the control. Also, increasing the concentration of gentamicin and penicillin, decreases plant root nodule number by 78.8% and 59.7%, respectively. Overall, the effect of antibiotics on soil microbial count and plant growth depends on antibiotic type and application method.

Keywords

Agency, E. M. (2017). Sales of veterinary antimicrobial agents in 30 European countries in 2015. Trends from 2010 to 2015.
Ansari, F. (2001). Use of systemic anti-infective agents in Iran during 1997-1998. Eurasian Journal of Clinical Pharmacology, 57(6-7), 547-551. doi:10.1007/s002280100351
Arora, N. K., Khare, E., Singh, S., & Tewari, S. (2018). Phenetic, genetic diversity and symbiotic compatibility of rhizobial strains nodulating pigeon pea in Northern India. Biotechnology, 8(1), 52-58. doi:10.1007/s13205-017-1074-1
Bassil, R. J., Bashour, I. I., Sleiman, F. T., & Abou-Jawdeh, Y. A. (2013). Antibiotic uptake by plants from manure-amended soils. Journal of Environmental Science and Health B, 48(7), 570-574. doi:10.1080/03601234.2013.774898
Batchelder, A. R. (1982). Chlortetracycline and Oxytetracycline Effects on Plant Growth and Development in Soil Systems. Journal of environmental quality, 11(4), 675-678. doi:10.2134/jeq1982.00472425001100040023x
Carvalho, P. N., Basto, M. C., Almeida, C. M., & Brix, H. (2014). A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environmental Science and Pollutant Research International, 21(20), 11729-11763. doi:10.1007/s11356-014-2550-3
Chowdhury, F., Langenkämper, G., & Grote, M. (2015). Studies on uptake and distribution of antibiotics in red cabbage. Journal für Verbraucherschutz und Lebensmittelsicherheit, 11. doi:10.1007/s00003-015-1008-y
Farkas, M. H., Berry, J. O., & Aga, D. S. (2007). Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environmental Science and Technology, 41(4), 1450-1456. doi:10.1021/es061651j
Griffin, E. A., Traw, M. B., Morin, P. J., Pruitt, J. N., Wright, S. J., & Carson, W. P. (2016). Foliar bacteria and soil fertility mediate seedling performance: a new and cryptic dimension of niche differentiation. Ecology, 97(11), 2998-3008. doi:10.1002/ecy.1537
Grote, M., Schwake-Anduschus, C., Michel, R., Stevens, H., Heyser, W., Lan-Genkämper, G., Freitag, M. (2007). Incorporation of veterinary antibiotics into crops from manured soil. Freitag / Landbauforschung Völkenrode, 1, 25-32.
Halleck, F. E., & Coehrane, V. W. (1950). The effect of fungistatic agents on the bacterial flora in the rhizosphere. Phytopathology, 40, 715-720.
Herklotz, P. A., Gurung, P., Vanden Heuvel, B., & Kinney, C. A. (2010). Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere, 78(11), 1416-1421. doi:10.1016/j.chemosphere.2009.12.048
Ji, X., Shen, Q., Liu, F., Ma, J., Xu, G., Wang, Y., & Wu, M. (2012). Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. Journal of Hazardous Materials, 235-236, 178-185. doi:https://doi.org/10.1016/j.jhazmat.2012.07.040
Kirchhelle, C. (2018). Pharming animals: a global history of antibiotics in food production (1935–2017). Palgrave Communications, 4(1), 96-110. doi:10.1057/s41599-018-0152-2
Kong, W., Li, C., Dolhi, J. M., Li, S., He, J., & Qiao, M. (2012). Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical–chemical properties. Chemosphere, 87(5), 542-548. doi:https://doi.org/10.1016/j.chemosphere.2011.12.062
 Kumar, K., Gupta, S., Chander, Y., & Singh, A. (2005). Antibiotic Use in Agriculture and Its Impact on the Terrestrial Environment. Advances in Agronomy, 87, 1-54. doi:10.1016/S0065-2113(05)87001-4
Kümmerer, K. (2009). Antibiotics in the aquatic environment– A review– Part I. Chemosphere, 75(4), 417-434. doi:https://doi.org/10.1016/j.chemosphere.2008.11.086
Lancashire, P. D., Bleiholder, H., Van Den Boom, T., Langeluddeke, P., Stauss, R., Weber, E., & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals in Applied Biology, 119, 561-601.
Li, Z. J., Xie, X. Y., Zhang, S. Q., & Liang, Y. C. (2011). Wheat Growth and Photosynthesis as Affected by Oxytetracycline as a Soil Contaminant. Pedosphere, 21(2), 244-250. doi:https://doi.org/10.1016/S1002-0160(11)60124-0
Liu, F., Ying, G. G., Tao, R., Zhao, J. L., Yang, J. F., & Zhao, L. F. (2009). Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental Pollution, 157(5), 1636-1642. doi:https://doi.org/10.1016/j.envpol.2008.12.021
Liu, L., Liu, Y. H., Liu, C. X., Wang, Z., Dong, J., Zhu, G. F., & Huang, X. (2013). Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecological Engineering, 53, 138-143. doi:https://doi.org/10.1016/j.ecoleng.2012.12.033
Martínez-Carballo, E., González-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148(2), 570-579. doi:https://doi.org/10.1016/j.envpol.2006.11.035
Michelini, L., Meggio, F., La Rocca, N., Ferro, S., & Ghisi, R. (2012). Accumulation and effects of sulfadimethoxine in Salix fragilis L. plants: a preliminary study to phytoremediation purposes. International Journal of Phytoremediation, 14(4), 388-402. doi:10.1080/15226514.2011.620654
Migliore, L., Rotini, A., Cerioli, N. L., Cozzolino, S., & Fiori, M. (2010). Phytotoxic antibiotic sulfadimethoxine elicits a complex hormetic response in the weed lythrum salicaria L. Dose-response. International Hormesis Society, 8(4), 414-427. doi:10.2203/dose-response.09-033.Migliore
Mihaylova, S., Genov, N., & Moore, E. (2014). Susceptibility of Environmental Strains of Rhizobium radiobacter to Antimicrobial Agents. World Applied Sciences Journal, 31, 859-862. doi:10.5829/idosi.wasj.2014.31.05.1851
Minden, V., Deloy, A., Volkert, A. M., Leonhardt, S. D., & Pufal, G. (2017). Antibiotics impact plant traits, even at small concentrations. AoB Plants, 9(2), plx010-plx021. doi:10.1093/aobpla/plx010
Nahar, N., Rashid, R., Begum, A., & Akhter, H. (2017). African Journal of Agricultural Research Isolation, identification and molecular characterization of Rhizobium species from Sesbania bispinosa cultivated in Bangladesh. African Journal of Agricultural Research, 12, 1874-1880. doi:10.5897/AJAR2017.12321
Norman, A. G. (1995). Terramycin and plant growth. Agronomy Journal, 47, 585-587.
Pan, M., & Chu, L. M. (2016). Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicology and Environmental Safety, 126, 228-237. doi:10.1016/j.ecoenv.2015.12.027
Penmetsa, R. V., Uribe, P., Anderson, J., Lichtenzveig, J., Gish, J. C., Nam, Y. W., Cook, D. R. (2008). The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant Journal, 55(4), 580-595. doi:10.1111/j.1365-313X.2008.03531.x
Pils, J. R. V., & Laird, D. A. (2007). Sorption of Tetracycline and Chlortetracycline on K- and Ca-Saturated Soil Clays, Humic Substances, and Clay−Humic Complexes. Environmental Science & Technology, 41(6), 1928-1933. doi:10.1021/es062316y
Pufal, G., Memmert, J., Leonhardt, S. D., & Minden, V. (2019). Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels. Environmental Pollution, 245, 531-544. doi:10.1016/j.envpol.2018.11.008
Ramarao, P., & Isaac, I. (1980). Effect of foliar application of antibiotics and gibberellic acid on the rhizosphere microflora of pea, infected withVerticillium dahliae. Folia Microbiologica, 25(4), 337-340. doi:10.1007/BF02876616
Rashtbari, M., & Safari Sinegani, A. A. (2020b). Resistance and Resilience of Total Fungi and Native Bacteria in Soils Treated by Organic and Mineral Conditioners against Antibiotics. Journal of Soil Biology, 8(1), 73-88. (In Persian)
Rashtbari, M. & Safari Sinegani, A. A. (2020b). Efficiency of Soil Extracellular Enzymes (Phosphatase and Urease) in Soils Treated by Organic and Mineral Conditioners Against Widely Used Veterinary Antibiotics (gentamicin, oxytetracycline and penicillin). Journl of Soil Management and Sustainable Production, 10(3), 1-26. (In Persian)
Reid, D. E., Li, D., Ferguson, B. J., & Gresshoff, P. M. (2013). Structure-function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean. Journal of Experimental Botany, 64(6), 1575-1585. doi:10.1093/jxb/ert008
Safari Sinegani, A. A., Sharifi, Z., & Safari Sinegani, M. (2010). Applied methods in microbiology. Bu Ali Sina University Press, pp 562. (In Persian)
Safari Sinegani, A. A., & Younessi, N. (2017). Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. Journal of Global Antimicrobial Resistance, 10, 247-255. doi:https://doi.org/10.1016/j.jgar.2017.05.012
Saïdi, S., Ramírez-Bahena, M. H., Santillana, N., Zúñiga, D., Álvarez-Martínez, E., Peix, A., & Velázquez, E. (2014). Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_1), 242-247. doi:https://doi.org/10.1099/ijs.0.052191-0
Sparks, D. L., Page, A. L., Helmke, P. A., & Leoppert, R. H. (1996). Methods of Soil Analysis Part 3-Chemical Methods (D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert Eds.). Madison, WI: Soil Science Society of America, American Society of Agronomy.
Teixidó, M., Granados, M., Prat, M. D., & Beltrán, J. L. (2012). Sorption of tetracyclines onto natural soils: data analysis and prediction. Environmental Science and Pollution Research, 19(8), 3087-3095. doi:10.1007/s11356-012-0954-5
Thiele-Bruhn, S., & Beck, I.-C. (2005). Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 59(4), 457-465. doi:https://doi.org/10.1016/j.chemosphere.2005.01.023
Timmerer, U., Lehmann, L., Schnug, E., & Bloem, E. (2020). Toxic Effects of Single Antibiotics and Antibiotics in Combination on Germination and Growth of Sinapis alba L. Plants (Basel), 9(1). doi:10.3390/plants9010107
Vraný, J., Vančura, V., & Macura, J. (1962). The effect of Foliar application of some readily metabolized substances, growth regulators and antibiotics on Rhizosphere microflora. Folia Microbiologica, 7(1), 61-69. doi:10.1007/BF02926332
Walkley, A., & Black, I. A. (1934). An examination of the method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
Wei, X., Wu, S., Nie, X., Yediler, A., & Wong, M. (2009). The effects of residual tetracycline on soil enzymatic activities and plant growth. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 44, 461-471. doi:10.1080/03601230902935139
Yang, J. F., Ying, G. G., Zhou, L. J., Liu, S., & Zhao, J. L. (2009). Dissipation of oxytetracycline in soils under different redox conditions. Environmental Pollution, 157(10), 2704-2709. doi:https://doi.org/10.1016/j.envpol.2009.04.031
Yang, Q., Zhang, J., Zhang, W., Wang, Z., Xie, Y., & Zhang, H. (2010). Influence of tetracycline exposure on the growth of wheat seedlings and the rhizosphere microbial community structure in hydroponic culture. Journal of Environmental Science and Health, Part B, 45(3), 190-197. doi:10.1080/03601231003613492
Younessi, N., Safari Sinegani, A. A., & Khodakaramian, G. (2019). Detection of antibiotic resistance genes in culturable bacteria isolated from soils around mines in Hamedan, Iran. International Journal of Environmental Science and Technology, 16(12), 7643-7652. doi:10.1007/s13762-018-02178-2
Younessi, N., Safari Sinegani, A. A., & Khodakaramian, Gh. (2017). Detection of beta lactamase gene in bacteria isolated from agriculturl, pasture and mining soils around Hamadan, Iran. Journal of Soil Biology, 23, 35-48. (In Persian)
Zhang, H., Li, X., Yang, Q., Sun, L., Yang, X., Zhou, M., & Bi, L. (2017). Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure. International journal of environmental research and public health, 14(11). doi:10.3390/ijerph14111336
Ziolkowska, A., Piotrowicz-Cieslak, A., Margas, M., Adomas, B., & Nalecz-Jawecki, G. (2015). Accumulation of tetracycline, oxytetracycline and chlortetracycline in pea (Pisum sativum L.). Fresenius Environmental Bulletin, 24, 1386-1391.