Document Type : Research Paper


1 Former Ph.D. Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran

2 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran

3 Associate Professor, Department of Soil Science, Faculty of Agriculture, Shahed University, Tehran, Iran

4 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran


In order to study the effect of nitrogen fertilizer treatments on yield traits, essence percentage, and the amount of nitrogen in cumin stem and leaves under different irrigation regimens, an experiment has been conducted as split plot based on randomized complete block design with three replications in the 2016-2017 crop season at the Research Field of Agriculture Faculty, Shahed University, Tehran, Iran. In this experiment, the main plot is consisted of different irrigation regimes at three levels (no stress, mild stress or irrigation based on draining 40% of available water, and severe stress or irrigation based on draining 80% of available water) and the subplot includes four levels of nitrogen fertilizer treatments (100% and 50% fertilizer recommendation of nitrogen (urea), seed stained biofertilizer application (Nitroxin), and combination treatment of biofertilizer and 50% fertilizer recommendation nitrogen). The results show that increasing deficit irrigation at a mild level and, above that, at a severe level, while increasing the percentage of essence, has had a significant negative effect on yield and yield components, total chlorophyll, shoot nitrogen concentration, and essence yield. Application of combination nitrogen fertilizer (urea + Nitroxin) while increasing the yield and yield components of Cumin, increase the percentage and yield of essence, and shoot nitrogen concentration, generally causing the most desirable quantitative and qualitative yield of Cumin.


Boyer, J. S. (2017). Plant water relations: a whirlwind of change. In Progress in Botany Vol. 79 (pp. 1-31). Springer, Cham.‏
Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório, M. L., ... & Pinheiro, C. (2002). How plants cope with water stress in the field? Photosynthesis and growth. Annals of botany, 89(7), 907-916. ‏
Darzi, M., Ghalavand, A., Rejali, F., & Sefidkon, F. (2007). Effects of biofertilizers application on yield and yield components in Fennel (Foeniculum vulgare Mill.).‏  Iranian Journal of Medicinal and Aromatic Plants Research, 22(4), 276-292. (In Persian)
Degenhardt, J., Köllner, T. G., & Gershenzon, J. (2009). Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70(15-16), 1621-1637.‏
Ehteramian, K. (2003). The effects of different levels of nitrogen fertilizer and plant dating on Cumin (Cuminum cyminum L.) in Kooshkak region in the Fars province. Master of Science Thesis of arid area management. Shiraz Univ., Shiraz, Iran.‏ (In Persian)
Fageria, N. K., De Morais, O. P., & Dos Santos, A. B. (2010). Nitrogen use efficiency in upland rice genotypes. Journal of plant nutrition, 33(11), 1696-1711.‏ doi: 10.1080/01904167.2010.496892
Farrokhinia, M., Roshdi, M., PasebanEslam, B., & Sasandoust, R. (2011). Evaluation of some physiological characteristics on yield of spring safflower under water stress. Iranian Journal of Crop Sciences, 42(3), 545-553. (In Persian)
Foroughian Arani, M., & Zeinali, H. (2013). Study of quantitative yield of medicinal plant Cumin under the influence of biological and chemical fertilizers, First National Conference on Medicinal Plants and Sustainable Agriculture, Hamedan, Hegmataneh Environmental Assessors Association.
Ghane, H. (2016). Influence of Priming and Cultivation Date on Yield and Yield Components of Two Cumin ecotypes. Master of Science Degree in Agriculture. Shahed Univ., Tehran, Iran. (In Persian)
‏Habibi, H., Mazaheri, D., Majnonhosseini, N., Chachichi, M. R., Tabatabayi, M., & Bigdeli, M. (2007). Evaluation of the Effect of Organic (Biological) and Nitrogenous (Urea) Sources on yield and amount of secondary metabolites of two species of wild thyme (Thymus spp.). Doctoral dissertation, Ph. D. dissertation, Faculty of Agriculture, Department of Agriculture. University of Tehran. (In Persian)
Han, H. S., & Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant soil and Environment, 52(3), 130.‏
Karimzadeh-Asl, K., & Baghbani Arani, A. (2019). Effect of different irrigation regimes and bio-fertilizers on grain yield, essential oil content, some physiologic traits and uptake of nutrient status in Cumin (Cuminum cyminum L.).‏ Environmental Stresses in Crop Sciences, 12(3), 817-830. (In Persian)
Kashfi Bonab, A. (2011). The relative economic advantage the cultivation and trade of medicinal plants in Iran and its value in world markets. Commercial Surveys, 44(8), 67-78. (In Persian)
Khorasani, Z., Nezami, A., Nasiri Mahalati, M., & Mohammadabadi, A. A. (2009). Effect of autumn cultivation history on the fenological and morphological characteristics of Cumin ecotypes in Mashhad weather conditions. Iranian Scientific Conference on Medicinal Plant Industry Development, 204.
Liu, F., Andersen, M. N., & Jensen, C. R. (2004). Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development. Field Crops Research, 85(2-3), 159-166. ‏
Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic press.‏
Mirhosseini, M. (2004). Cumin status in pharmaceutical, food and export industries. Proceedings of the First National Cumin Conference. Islamic Azad University of Sabzevar Branch. Pp. 36-25. (In Persian)
Müller-Xing, R., Xing, Q., & Goodrich, J. (2014). Footprints of the sun: memory of UV and light stress in plants. Frontiers in plant science, 5, 474.‏
Omidbaigi, R. (2007). Production and processing of medicinal plants. Beh-Nashr: Mashhad, Iran.‏ (In Persian)
Pishva, Z. K., Dehaghi, M. A., Gholami, S., & Hosein, G. (2014). Effect of biological nitrogen and chemical nitrogen fertilizer on yield quality and quantity of Cumin (Cuminum cyminum L.). International Journal of Biosciences (IJB), 5(1), 14-20.
Qiu, Y., Fu, B., Wang, J., & Chen, L. (2001). Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology, 240(3-4), 243-263.‏
Rahmani, N., Jalali-Yekta, A., Taherkhani, T., & Daneshian, J. (2010). Effect of different levels of plant density and nitrogen on essential oil yield of Marigold (Calendula officinalis L.). Journal of Crop Ecophysiology, 2(1), 347-354. (In Persian)
Rezaei Chiyaneh, I., Pirzad, A., & Farjami, A. (2015). Effect of nitrogen, phosphorus and sulfur supplier bacteria on seed yield and essential oil of Cumin (Cuminum cyminum L.). Journal of Agricultural Science and Sustainable Production, 24(4), 71-83.
Saeednejad, A. H., & Rezvani Moghaddam, P. (2010). Evaluation of the effect of biological and chemical fertilizers on morphological characteristics, yield, yield components and essential oil percentage of Cumin (Cuminum cyminum L.). Journal of Horticultural Science, 24(1), 38-44. (In Persian)
Saydi, Z., Fateh, E., & Aynehband, A. (2017). The effect of different sources of nitrogen and organic fertilizers on the yield and yield components of Ajowan (Trachyspermum ammi L.). Journal of Agroecology, 9(1), 115-128. (In Persian)
Talaei, G. H., & Dehaghi, M. A. (2015). Effects of bio and chemical fertilizers on yield and yield components of Cumin (Cuminum cyminum L.). Iranian Journal of Medicinal and Aromatic Plants, 30(6). doi:10.22092/ijmapr.2015.11928 (In Persian)
Tavakkoli Zeinali, A. (2002). The effect of irrigation cessation at different growth stages on yield and its components in safflower seed. M.Sc. thesis, Tehran University. (In Persian)
Temminghoff, E. E., & Houba, V. J. eds. (2004). Plant analysis procedures (Vol. 179). Dordrecht: Kluwer Academic Publishers.
Yazdani Chamheidary, Y., Ramroudi, M., & Asgharipour, M. R. E. (2014). Evaluation the effects of drought stress on yield, yield components and quality of (Cuminum cyminum L.) under Fe and Zn foliar spraying conditions. Journal of Applied Research in Plant Ecophysiology. Gonbad Kavous Univ., 1(3), 81-96. (In Persian)
Zahir, Z. A., Arshad, M., & Frankenberger, W. T. (2004). Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy, 81(1), 98-169.