Ahmadi, M. (2008). Phenologic growth estimation of wheat. M.S. Thesis, Gorgan university, Gorgan, Iran. (In Persian)
Ahmed, M., Akram, M. N., Asim, M., Aslam, M., Hassan, F. U., Higgins, S., ... & Hoogenboom, G. (2016). Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture, 123, 384-401.
Andarzian, B., Hoogenboom, G., Bannayan, M., Shirali, M., & Andarzian, B. (2015). Determining optimum sowing date of wheat using CSM-CERES-Wheat model. Journal of the Saudi society of agricultural sciences, 14(2), 189-199.
Anwar, M. R., Li Liu, D., Farquharson, R., Macadam, I., Abadi, A., Finlayson, J., ... & Ramilan, T. (2015). Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agricultural Systems, 132, 133-144.
Arora, V. K., Singh, H., & Singh, B. (2007). Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model. Agricultural water management, 94(1-3), 22-30.
Asseng, S., Jamieson, P. D., Kimball, B., Pinter, P., Sayre, K., Bowden, J. W., & Howden, S. M. (2004). Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85(2-3), 85-102.
Asseng, S., Van Keulen, H., & Stol, W. (2000). Performance and application of the APSIM Nwheat model in the Netherlands. European journal of agronomy, 12(1), 37-54.
Boote, K. J., Porter, C., Jones, J. W., Thorburn, P. J., Kersebaum, K. C., Hoogenboom, G., ... & Hatfield, J. L. (2016). Sentinel site data for crop model improvement—definition and characterization. Improving Modeling Tools to Assess Climate Change Effects on Crop Response, 7, 125-158.
Chen, C., Wang, E., & Yu, Q. (2010). Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agricultural Water Management, 97(8), 1175-1184.
Dettori, M., Cesaraccio, C., Motroni, A., Spano, D., & Duce, P. (2011). Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field crops research, 120(1), 179-188.
Eitzinger, J., Trnka, M., Hösch, J., Žalud, Z., & Dubrovský, M. (2004). Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modelling, 171(3), 223-246.
Holzworth, D. P., Huth, N. I., & deVoil, P. G. (2011). Simple software processes and tests improve the reliability and usefulness of a model. Environmental modelling & software, 26(4), 510-516.
Innes, P. J., Tan, D. K. Y., Van Ogtrop, F., & Amthor, J. S. (2015). Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agricultural and Forest Meteorology, 208, 95-107.
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., ... & McLean, G. (2003). An overview of APSIM, a model designed for farming systems simulation. European journal of agronomy, 18(3-4), 267-288.
Koocheki, A., & Nassiri, M. (2008). Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Iranian Journal field crops research, 6(1), 139-154. (In Persian)
Li, Z. T., Yang, J. Y., Drury, C. F., & Hoogenboom, G. (2015). Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agricultural Systems, 135, 90-104.
Martín, M., Olesen, J. E., & Porter, J. R. (2014). A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark. Agricultural and Forest Meteorology, 187, 1-13.
Mirdavardoost, F. (2008). Quantifying the vernalization response in some Iranian wheat cultivars. M.S. Thesis, Gorgan university, Gorgan, Iran. (In Persian)
Monteith, J. L. (1996). The quest for balance in crop modeling. Agronomy Journal, 88(5), 695-697.
Özdoğan, M. (2011). Modeling the impacts of climate change on wheat yields in Northwestern Turkey. Agriculture, ecosystems & environment, 141(1-2), 1-12.
Pirttioja, N., Carter, T. R., Fronzek, S., Bindi, M., Hoffmann, H., Palosuo, T., ... & Asseng, S. (2015). Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 65, 87-105.
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature communications, 6(1), 1-9.
Rezaei, E. E., Siebert, S., & Ewert, F. (2015). Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environmental Research Letters, 10(2), 024012.
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., ... & Neumann, K. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111(9), 3268-3273.
Soltani, A., & Sinclair, T. R. (2015). A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research, 175, 37-46.
Sun, N., & Feng, L. P. (2005). Assessing the climatic risk to crop yield of winter wheat using crop growth models. Trans CSAE, 21, 106-110.
Tao, F., & Zhang, Z. (2010). Adaptation of maize production to climate change in North China Plain: quantify the relative contributions of adaptation options. European Journal of Agronomy, 33(2), 103-116.
Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., & Prasad, P. V. (2000). Temperature variability and the yield of annual crops. Agriculture, Ecosystems & Environment, 82(1-3), 159-167.
Zheng, B., Chenu, K., Doherty, A., Doherty, T., & Chapman, L. (2014). The APSIM-Wheat Module. APSRU Toowoomba, Australia, 1-44.