Document Type : Research Paper


1 Ph.D. Candidate, Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht, Iran

2 Associate Professor, Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht, Iran

3 Professor, Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht, Iran

4 Assistant Professor, Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, G. C.,Tehran, Iran

5 Professor, Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden.


Studies to assess quality of dent maize grain are noteworthy because of its wide use as food, feed and ethanol production. This study aimed to evaluate the concentration and composition of starch and oil in maize grain in response to different cultivars (KSC704 and KSC260), planting dates (20 June and 21 July), irrigation (12-day and 6-day intervals) and nitrogen (0 and 184 kg N ha-1) rate as the strip-plot factorial statistical model during the 2018 growing season in Pakdasht county of Iran. The results suggested that nitrogen application increased grain yield by one tonnes ha-1. In addition, KSC260 had higher grain yield than KSC704 by 0.96 tonnes ha-1. All compositional variables except stearic acid were affected by the interaction effect of irrigation and nitrogen rate. In low irrigated treatments, nitrogen application reduced the amount of oil, palmitic acid, oleic acid, linoleic acid and linolenic acid. In low irrigated condition, nitrogen application had no effect on increasing the concentration of starch and amylopectin. The use of nitrogen fertilizer reduced the amount of stearic acid by 0.05 g kg-1. In conclusion, the balance between irrigation and nitrogen utilization seems to be important for improving the oil and starch properties of maize grain.


Abdala, L. J., Gambin, B. L., & Borrás, L. (2018). Sowing date and maize grain quality for dry milling. European Journal of Agronomy, 92, 1-8. Doi:
Aguirrezábal, L., Martre, P., Pereyra-Irujo, G., Echarte, M. M., & Izquierdo, N. (2015). Improving grain quality: ecophysiological and modeling tools to develop management and breeding strategies (2th ed., Vol. 2, pp.   423-465). Crop physiology. Massachusetts: Academic Press. Doi:
Amiri, R., Sasani, S., Jalali-Honarmand, S., Rasaei, A., Seifolahpour, B., & Bahraminejad, S. (2018). Genetic diversity of bread wheat genotypes in Iran for some nutritional value and baking quality traits. Physiology and Molecular Biology of Plants, 24(1), 147-157. Doi:
Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Effects of drought on Maize. In Drought stress in maize (Zea mays L.) (pp. 5-17). Springer, Cham.
Bellaloui, N., Mengistu, A., & Kassem, M. A. (2013). Effects of genetics and environment on fatty acid stability in soybean seed. Food and Nutrition Sciences, 4(09), 165- 175. Doi:
Branch, K. (2009). Effect of super absorbent application on antioxidant enzyme activities in Canola (Brassica napus L.) cultivars under water stress conditions. AmericanJournal of Agricultural and Biological Sciences, 4(3),215-223.
Burton, R.A., Jenner, H., Carrangis, L., Fahy, B., Fincher, G.B., Hylton, C., Laurie, D.A., Parker, M., Waite, D., van Wegen, S., Verhoeven, T., & Denyer, K. (2002). Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant Journal. 31, 97-112.
Butts-Wilmsmeyer, C.J., Seebauer, J.R., Singleton, L., & Below, F. E. (2019). Weather during key growth stages explains grain quality and yield of maize. Agronomy, 9(1), 16. Doi:
Cao, X., Sun, H., Wang, C., Ren, X., Liu, H., & Zhang, Z. (2019). Effects of late‐stage nitrogen fertilizer application on the starch structure and cooking quality of rice. Journal of the science of food and agriculture, 98(6), 2332-2340. Doi:
 Carrillo, W., Carpio, C., Morales, D., Vilcacundo, E., Alvarez, M., & Silva, M. (2017). Content of fatty acids in corn (Zea mays L.) oil from Ecuador. Asian Journal of Pharmaceutical and Clinical Research, 10, 150-153. Doi:
Chavez‐Murillo, C. E., Orona‐Padilla, J. L., & de la Rosa Millan, J. (2019). Physicochemical, functional properties and ATR‐FTIR digestion analysis of thermally treated starches isolated from black and bayo beans. Starch, 71(3-4), 1800250. Doi:
Chen, G.X., Zhen, S.M., Liu, Y.L., Yan, X., Zhang, M., & Yan, Y.M. (2017). In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response. BMC plant biology, 17(1), 168.
Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch. Food hydrocolloids, 23(6), 1527-1534. Doi:
Darrah, L. L., McMullen, M. D., & Zuber, M. S. (2019). Breeding, Genetics and Seed Corn Production. In Corn (pp. 19-41). AACC International Press. Doi:
Dhungana, S. K., Kulkarni, K. P., Kim, M., Ha, B. K., Kang, S., Song, J. T., ... & Lee, J. D. (2017). Environmental stability and correlation of soybean seed starch with protein and oil contents. Plant Breeding and Biotechnology, 5(4), 293-303. Doi:
Dinges, J.R., Colleoni, C., James, M.G., & Myers, A.M. (2003). Mutational analysis of the pullulanase-type debranching enzyme in maize indicates multiple functions in starch metabolism. Plant Cell 15, 666-680.
Duarte, A. P., Mason, S. C., Jackson, D. S., & de C Kiehl, J. (2005). Grain quality of Brazilian maize genotypes as influenced by nitrogen level. Crop science, 45(5), 1958-1964. Doi:
Ercoli, L., Masoni, A., Mariotti, M., & Arduini, I. (2009). Accumulation of dry matter and nitrogen in durum wheat during grain filling as affected by temperature and nitrogen rate. Italian Journal of Agronomy; 1: 3-13.
FAOSTAT. (2017). Statistical databases and data-sets of the Food and Agriculture Organization of the United Nations.
Fernández-García, S., Represas-Represas, C., Ruano-Raviña, A., Botana-Rial, M., Mouronte-Roibás, C., Ramos-Hernández, C., & Villar, A. F. (2020). Predictores sociales y clínicos asociados con estancia hospitalaria prolongada en pacientes con agudización grave de EPOC. Revista Clínica Española, 220(2), 79-85. Doi:
Geesing, D., Diacono, M., & Schmidhalter, U. (2014). Site‐specific effects of variable water supply and nitrogen fertilisation on winter wheat. Journal of Plant Nutrition and Soil Science, 177(4), 509-523.  Doi:
Ghassemi-Golezani, K., Heydari, S., & Dalil, B. (2016). Changes in seed oil and protein contents of maize cultivars at different positions on the ear in response to water limitation. Acta agriculturae Slovenica, 107(2), 311-319. Doi:
 Govindaraj, M., Rai, K. N., Cherian, B., Pfeiffer, W. H., Kanatti, A., & Shivade, H. (2019). Breeding Biofortified Pearl Millet Varieties and Hybrids to Enhance Millet Markets for Human Nutrition. Agriculture, 9(5), 106. Doi:
Hanway, J. J. (1966). How a corn plant develops. Iowa State Univ. Coop. Extension Serv. Spec. Rep, 48, 1-17.
Hirano, T., Saito, Y., Ushimaru, H., & Michiyama, H. (2005). The effect of the amount of nitrogen fertilizer on starch metabolism in leaf sheath of japonica and indica rice varieties during the heading period. Plant production science, 8(2), 122-130.
Holou, R. A. Y., & Kindomihou, V. (2011). Impact of nitrogen fertilization on the oil, protein, starch, and ethanol yield of corn (Zea mays L.) grown for biofuel production. Journal of Life Sciences, 5, 1013-1021.
Kaplan, M., Kale, H., Karaman, K., & Unlukara, A. (2017). Influence of different irrigation and nitrogen levels on crude oil and fatty acid composition of maize (Zea mays L.). Grasas y Aceites, 68(3), 1-6. Doi:
Kaplan, M., Karaman, K., Kardes, Y. M., & Kale, H. (2019). Phytic acid content and starch properties of maize (Zea mays L.): Effects of irrigation process and nitrogen fertilizer. Food chemistry, 283, 375-380. Doi:
Kaufman, R. C., Wilson, J. D., Bean, S. R., Presley, D. R., Blanco-Canqui, H., & Mikha, M. (2013). Effect of nitrogen fertilization and cover cropping systems on sorghum grain characteristics. Journal of agricultural and food chemistry, 61(24), 5715-5719. Doi:
Kumari, A., & Parida, A. K. (2018). Metabolomics and network analysis reveal the potential metabolites and biological pathways involved in salinity tolerance of the halophyte Salvadora persica. Environmental and Experimental Botany, 148, 85-99. Doi:
Lee, J. D., Oliva, M. L., Sleper, D. A., & Shannon, J. G. (2008). Irrigation has little effect on unsaturated fatty acid content in soya bean seed oil within genotypes differing in fatty acid profile. Journal of agronomy and crop science, 194(4), 320-324.   Doi:
Li, L., Teng, M., Liu, Y., Qu, Y., Zhang, Y., Lin, F., & Wang, D. (2017). Anti-gouty arthritis and antihyperuricemia effects of sunflower (Helianthus annuus) head extract in gouty and hyperuricemia animal models. BioMed research international, 2017. Doi:
Liu, W., Tollenaar, M., Stewart, G., & Deen, W. (2004). Within‐row plant spacing variability does not affect corn yield. Agronomy Journal, 96(1), 275-280.
Maresma, A., Ballesta, A., Santiveri, F., & Lloveras, J. (2019). Sowing date affects maize development and yield in irrigated Mediterranean Environments. Agriculture, 9(3), 67. Doi:
Martínez‐Rivas, J. M., Sánchez‐García, A., Sicardo, M. D., García‐Díaz, M. T., & Mancha, M. (2003). Oxygen‐independent temperature regulation of the microsomal oleate desaturase (FAD2) activity in developing sunflower (Helianthus annuus) seeds. Physiologia Plantarum, 117(2), 179-185. Doi:
Megazyme (2016) Amylose/Amylopectin. Assay Procedure for Measurement of Amylose and Amylopectin of Starch. 11 p.
Nafziger, E. (2009). Corn. Illinois Agronomy Handbook. Urbana, USA: Crop Science Extension and Outreach.
Peng, L. P., Men, S. Q., Liu, Z. A., Tong, N. N., Imran, M., & Shu, Q. Y. (2020). Fatty Acid Composition, Phytochemistry, Antioxidant Activity on Seed Coat and Kernel of Paeonia ostii from Main Geographic Production Areas. Foods, 9(1), 30. Doi:
Rahimi Jahangirlou, M., Kambouzia, J., Soufizadeh, S. Z., & Rezayi, E. M. (2017). Investigation of grain yield and some related traits in different maize cultivars (Zea mays L.). Iranian Journal of Plant Ecophysiology, 10(35), 15-166.
Regina, A., Blazek, J., Gilbert, E., Flanagan, B. M., Gidley, M. J., Cavanagh, C., Morell, M. K. (2012). Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics. Carbohydrate Polymers, 89(3), 979-991. Doi:
Rong, Y., & Xuefeng, W. (2011). Effects of nitrogen fertilizer and irrigation rate on nitrate present in the profile of a sandy farmland in Northwest China. Procedia Environmental Sciences, 11, 726-732.
Saeidi, M., & Abdoli, M. (2018). Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. Agricultural Sciense and Technology; 17: 885-898.
SAS Institute. (2003). The SAS system. v. 9.1. SAS Inst., Cary, NC.
Sharifi, R.S., Namvar, A., & Sharifi, R.S. (2017). Grain filling and fatty acid composition of safflower fertilized with integrated nitrogen fertilizer and biofertilizers. Pesquisa Agropecuária Brasileira, 52(4), 236-243. Doi:
Shinde, S.V., Nelosen, J.E., & Huber, K.C. (2003). Soft wheat starch pasting behavior in relation to A- and B-type granule content and composition. Cereal Chemistry, 80, 91-98.  Doi:
Song, Y. J., Choi, I. Y., Sharma, P. K., & Kang, C. H. (2012). Effect of different nitrogen doses on the storage proteins and palatability of rice grains of primary and secondary rachis branches. Plant Production Science, 15(4), 253-257. Doi:
Mason, S.C., & D'croz-Mason, N.E. (2002). Agronomic Practices Influence Maize Grain Quality, Journal of Crop Production, 5(1-2), 75-91, Doi:
Taylor, B.R., & Roscrow, J.C. (1990). Factors affecting the quality of wheat grain for distilling in Northern Scotland. Aspects of Applied Biology, (25), 183-191.
Uribelarrea, M., Moose, S. P., & Below, F. E. (2007). Divergent selection for grain protein affects nitrogen use in maize hybrids. Field Crops Research, 100(1), 82-90. Doi:
Wang, X., He, M., Li, F., Liu, Y., Zhang, H., & Liu, C. (2008). Coupling effects of irrigation and nitrogen fertilization on grain protein and starch quality of strong-gluten winter wheat. Frontiers of Agriculture in China, 2(3), 274-280. Doi: 10.1007/s11703-008-0048-.
Wang, X., Liu, S., Yin, X., Bellaloui, N., Winings, J. H., Agyin-Birikorang, S., & Mengistu, A. (2020). Maize Grain Composition with Additions of NPK Briquette and Organically Enhanced N Fertilizer. Agronomy, 10(6), 852. Doi:
Wang, Y., Yu, Z., Li, S., & Yu, S. (2003). Activity of enzymes related to starch synthesis and their effect during the filling of winter wheat. Zuo wu xue bao, 29(1), 75-81. Doi: 10.1017/S0021859609008612
Wei, H. Y., Wang, Y. J., Meng, T. Y., Ge, M. J., Zhang, H. C., Dai, Q. G., Huo, Z. Y., & Xu, K. (2014). Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice. Chinese Journal of Applied Ecology, 25, 488-496. (In Chinese). Doi:
Zahedi, Z., Nabipour, A., & Ebrahimi, A. (2019). Effectiveness of molecular markers for improving grain quality in Iranian rice. Journal of Plant Molecular Breeding. 1 (31), 103-116. Doi: 10.22058/JPMB.2019.111567.1187
Zhu, D. W., Zhang, H. C., Gou, B. W., Ke, X., Dai, Q. G., Wei, H. Y., & Huo, Z. Y. (2017). Effects of nitrogen level on yield and quality of japonica soft super rice. Journal of integrative agriculture, 16(5), 1018-1027. Doi: