Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.

2 Associate Professor, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.

3 Professor, Department of Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.

4 Associate Professor, Department of Horticulture, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran.

5 Assistant Professor, Department of Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

Abstract

The present experiment has compared the resistance of different mycorrhizal pistachio rootstocks to salinity and drought stress in a completely randomized design with three replications. It has used Funneliformis mosseae and four pistachio species, Badami-e Riz Zarand, Qazvini, Sarakhs, and UCB1. In addition, the experiment of water stress in 4 levels (100%, 80%, 60%, and 40% FC), and experiment of salinity stress in 4 levels (0.91, 7.57, 16.12, and 24.63 dSm-1), have been applied for 60 days. At the end of the experiment, different characteristics such as total biomass, leaf area, tissue moisture percentage, and electrolyte leakage have been measured. Also, during the experiment, total chlorophyll, carotenoids and anthocyanin pigments have been surveyed and analyzed. The results indicate that mycorrhizal symbiosis has improved total biomass and leaf moisture content under both drought and salinity stress conditions, wherein tissue moisture content and total leaf chlorophyll content have decreased and anthocyanin content and electrolyte leakage increased. As for the lowest leaf, stem and root moisture content have been observed at the highest drought and salinity levels with UCB1 having the highest biomass and moisture under salinity stress and the highest leaf and stem moisture content and lowest electrolyte leakage are observed in Sarakhs rootstock under drought stress. It seems UCB1 and Sarakhs symbiotic with mycorrhiza can be useful for salinity and drought stress, respectively.

Keywords

Abbasi, M. K., Sharif, S., Sultan, T., & Aslam, M. (2011). Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosystem, 145, 159–168.
Abdel-Fattah, G. M., Asrar, A. A., Al-Amri, S. M., & Abdel-Salam, E. M. (2014). Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants grown in a sandy loam soil. Journal Food Agriculture Environment, 12, 150–165.
Abdel-Salam, E., Alatar, A., & El-Sheikh, M. A. (2018). Inoculation with arbuscular mycorrhiza fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences, 25, 1772–1780.
Bach, E., Seger, G. D. S., Fernandes, G. C., Lisboa, B. B., & Passaglia, L. M. P. (2016). Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecology, 99, 141–149.
Barzana, G., Aroca, R., Paz, J. A., Chaumont, F., Martinez-Ballesta, M. C., Carvajal, M., & Ruız-Lozano J. M. (2012). Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annual Botany-London, 109, 1009–1017.
Bas, H., & Gurel, S. (2016). The influence of Zn, Fe and B applications on leaf and fruit absorption of table olive “Gemlik” based on phonological stages. Scientia Horticulturae, 198, 336–343.
Buscot, F. (2015). Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. Journal of Plant Physiology, 172, 55–61.
Chelli-Chaabouni, A., Mosbah, A. B., Gargouri-Bouzid, R., & Drira, N. (2010). In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. Environmental and Experimental Botany, 69, 302–312.
Eskandari, S., Mozafari, V., & Tajabadipour, A. (2011). Effects of copper and salinity on some physiological and anatomical indices of two pistachio cultivars under greenhouse conditions. Journal of Water and Soil, 3, 1210-1223.
Fathi, H., Imani, A., Amiri, M. E., Hajilou, J., & Nikbakht, J. (2017). Response of Almond Genotypes/Cultivars Grafted on GN15 ‘Garnem’ Rootstock in Deficit-Irrigation Stress Conditions. Journal of Nuts, 8(2), 123-135.
Fattahi, M., Shamshiri, M. H., & Esmaeilzade, M. (2014). Evaluation of leaf physiomorphological responses of three pistachio rootstocks inoculated with arbuscular mycorrhizae to aalt stress. Iranian Journal of Horticultural Science and Technology, 15(4), 469-482. (In Persian)
Feng, G., Zhang, F. S., Li, X., Tian, C. Y., Tang, C., & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185–190.
Giri, B. R., & Mukerji, K. G. (2002). VA mycorrhizal techniques/VAM technology in establishment of plants under salinity stresses condition. Techniques in mycorrhizal stueies, Kluwer, Dordrecht, pp. 313-327.
Hashem, A., Abd-Allah E. A. A., Aldubise, A., & Egamberdieva, D. (2015). AM enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. Journal of Plant Interaction, 10, 230–242.
Hojjat-Nooghi, F., & Mozafari, V. (2012). Effects of calcium on eliminating the negative effects of salinity in pistachio (Pistacia vera L.) Seedlings. Australian Journal of Crop Science, 6(4), 711-716.
Jogaiah, S., Ramteke, S. D., Sharma, J., & Upadhyay, A. K. (2014). Moisture and salinity stress induced in biochemical constituents and water relations of different grape rootstock cultivars. International Journal of Agronomy, 8page. http://dx.doi.org/10.1155/2014/789087
Kaiser, C., Kilburn, M. R, Clode, P. L., Fuchslueger, L., Koranda, M., Cliff, J. B., Solaiman, Z. M., & Murphy D.V. (2015). Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytology, 205, 1537–1551.
Khoyerdi, F., Shamshiri, M. H., & Estaji A. (2016). Changes in some physiological and osmotic parameters of severalpistachio genotypes under drought stress.  Scientia Horticulturae, 198, 44–51.
Kumar, A., Sharma, S., Mishra, S., & Dames J. F. (2015). Arbuscular mycorrhizal inoculation improves growth and antioxidative response of Jatropha curcas (L.) under Na2SO4 salt stress. Plant Bio system, 149, 260–269.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic. Methods Enzymol, 148, 350–382.
Liu, B., Cheng, L., Ma, F., Zou, Y., & Liang, D. (2012). Growth, biomass allocation, and water use efficiency of 31 apple cultivars grown under two water regimes. Agroforestry Systems, 84(2), 117-129.
Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaClinduced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany Journal, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134.
Machado, R. M. A., & Serralheiro, R. P.  (2017). Soil Salinity: Effect on Vegetable Crop Growth. Management practices to prevent and mitigate soil salinization. Scientia Horticulturae, 3(30), 10, 339-350.
Manchanda, G., & Garg, N. (2011). Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosystem, 145, 88–97.
Nadeem, S. M., Ahmad, M., Zahir, Z. A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Adv, 32, 429–448.
Nimbolkar, P. K. Shiva B., & Amarjeet K. R. (2016). Rootstock breeding for abiotic stress tolerance in fruit crops. International Journal of Agriculture Environment and Biotechnology, 9(3), 375-380.
Paine, T. D., Hanlon, C. C., Pittenger, D. R., Ferrin, D. M., & Malinoski, M. K. (1992). Consequences of water and nitrogen management on growth and aesthetic quality of drought-tolerant woody landscape plants. Journal of Environmental Horticulture, 10, 94-99.
Qustrica, J., Morillonb, R., Luroc, F., Herbetted, S., Lourkistia, R., Giannettinia, J., & Bertia, J. L. (2017). Santini trifoliata L. Raf.) Enhances natural chilling stress tolerance of common Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb. × Poncirus clementine (Citrus clementina Hort. ex Tan). Journal of Plant Physiology, 214, 108–115.
Rahneshana, Z., Nasibia, F., & Ahmadi Moghadam, A. (2018). Effects of salinity stress on growth, physiological, biochemical parameters and nutrients in pistachio (Pistacia vera L.) rootstocks. Journal of plant interactions, 1, 73–82.
Ranjbar, R., Lemeur, R., & Vandamme, P. (2000). Ecophysiological characteristic of two pistachio species (Pistacia khinjuk and P. mutica) in response to salinity. Gent University, 53,179-188.
Rashid M.A., Mujawar L.H., Shahzad T., Almeelbi T., Ismail I.M.I., & Oves M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res, 183, 26–41.
Romero, P., Navarro, J. M., Perez-Perez, J., Garcia-Sanchez, F., Gomez-Gomez, A., Porras, I., Martinez, V., & Botia, P. (2006). Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiology, 26, 1537–1548.
Shamshiri, M. H. & Fattahi, M. (2016). Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP_test. Russian Journal of Plant Physiology, 63(1), 101–110.
Singh, J. S., Abhilash, P. C., & Gupta, V. K. (2016). Agriculturally important microbes in sustainable food production. Trend Biotechnology, 34, 773–775.
Wagner, G.J. (1979). Content and vacuole/ extravacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplast. Plant Physiology, 64, 88-93.
Wu, Q. S., Zou, Y. N., Liu, W., Ye, X. F., Zai, H. F., & Zhao, L. J. (2010). Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environment, 56, 470-475.
Yuan, S. F., Li, M. Y., Fang, Z. Y., Liu, Y., Shi, W., Pan, B., Wu, K., Shi, J. X., Shen, B., & Shen, Q. R. (2016). Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bio-organic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biology Control, 92, 164–171.
Zrig, A., Mohamed, H. B., Tounekti, T., Khemira, H., Serrano, M., Valeroc, D., & Vadel, A. M. (2016). Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany, 102, 50–59.