Document Type : Research Paper


1 Ph.D. Candidate, Department of Production Engineering and Plant Genetics, Agriculture Faculty, University of Zanjan, Zanjan, Iran

2 Associate Professor, Department of Production Engineering and Plant Genetics, Agriculture Faculty, University of Zanjan, Zanjan, Iran.

3 Assistant Professor, Grain and Plant Improvement Institute, Karaj, Iran.


In order to investigate the effects of foliar application of 6-benzylaminopurine on physiological traits, yield and yield components of quinoa (cultivar Q26) an factorial experiment has been conducted, based on randomized complete block design with four replications at the research farm of Agriculture Faculty, the University of Zanjan, during cropping seasons of 2017. The experimental factors include optimal irrigation (-0.4 MPa) and drought stress (-1.5 MPa) as primary factor and foliar 6-benzylaminopurine in three levels (0, 50, and 100 μM) as the secondary one. Irrigation treatment has significant effect on all traits, except chlorophyll b and cartenoide. Drought stress increases electrolyte leakage (EL), proline, and Harvest index (HI) though it has a declingin effect on other traits. The effect of irrigation and hormone interaction has been considerable, except for chlorophyll b, total chlorophyll, thousand weight grain, and biomass yield. The highest grain yield (215.75 g.m2) in optimal irrigation is observed in 50 μM and in drought stress condition with 149.76 g.m2, obtained in 100 μM of cytokinin. The maximum harvest index (25.6%) can be observed in the control treatment of drought stress. Results show that applying cytokinin reduces the unfavorable effects on quinoa; therefore, this hormone’s foliar can be a solution to enhance the grain yield of quinoa under drought stress conditions.


Akter, N., Islam, M. R., Karim, M. A., & Hossain, T. (2014). Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. Journal of Crop Science and Biotechnology, 17(1), 41-48.
Ali, Z., Basra, S. M. A., Munir, H., Mahmood, A., & Yousaf, S. (2011). Mitigation of drought stress in maize by natural and synthetic growth promoters. Journal of Agriculture and Social Sciences, 7(2), 56-62.
Alizadeh, A. (2002) Irrigation System Design. 8th Edition (Revised), Ferdowsi University Press, 655 p. (In Persian)
Anjum, S. A., Xie, X., Farooq, M., Wang, L., Xue, L., Shahbaz, M., & Salhab, J. (2011). Effect of exogenous methyl jasmonate on growth, gas exchange and chlorophyll contents of soybean subjected to drought. African Journal of Biotechnology, 10(47), 9640-9646.
Arjenaki, F. G., Jabbari, R., & Morshedi, A. (2012). Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. International Journal of Agriculture and Crop Sciences, 4(11), 726-729. DOI: 10.3923/rjes.2009.345.350
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
Dawood, M. G. (2018). Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal, 19(5), 245-254.
Dawood, M. G., & Sadak, M. S. (2014). Physiological role of glycinebetaine in alleviating the deleterious effects of drought stress on canola plants (Brassica napus L.). Middle East Journal of Agriculture Research, 3(4), 943-954.
Elewa, T. A., Sadak, M. S., & Saad, A. M. (2017). Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Research, 14(1), 21-33.
Emam, Y., Karimzadeh Soureshjani, H., Moori, S., Maghsoudi, K. (2013). Biochemical responses of two wheat cultivars to late season drought stress and auxin and cytokinin application. Journal of Plant Process and Function, 2(3), 65-74.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009).  Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212.
Ferrat, I. I., & Lovat, C. J. (1999). Relation between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit. Crop Science, 39, 467-470.
Fghire, R., Anaya, F., Issa, O. A., & Wahbi, S. (2017). Physiological and growth response traits to water deficit as indicators of tolerance criteria between quinoa genotypes. Journal of Materials and Environmental Sciences, 8(6), 2084-2093.
Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(03), 269-279.
Fuentes, F., & Paredes-Gónzalez, X. I. M. E. N. A. (2013). Nutraceutical perspectives of quinoa: biological properties and functional applications. FAO and CIRAD: state of the art report of quinoa in the world in, 286-299.
González, J. A., Gallardo, M., Hilal, M. B., Rosa, M. D., & Prado, F. E. (2009). Physiological responses of quinoa (Chenopodium quinoa) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies, 50(1), 35-42.
Hirich, A., Choukr‐Allah, R. & Jacobsen, S. E. (2014). Deficit irrigation and organic compost improve growth and yield of quinoa and pea. Journal of Agronomy and Crop Science, 200(5), 390-398.
Hoque, M. A., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2008). Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology, 165(8), 813-824.
Hussein, Y., Amin, G., Azab, A., & Gahin, H. (2015). Induction of Drought Stress Resistance in Sesame (Sesamum indicum L.) Plant by Salicylic Acid and Kinetin. Journal of Plant Sciences, 10(4), 128-141. DOI: 10.3923/jps.2015.128.141
Jacobsen, S. E., Jensen, C. R., & Liu, F. (2012). Improving crop production in the arid Mediterranean climate. Field Crops Research, 128, 34-47.
Kafi, M., Zamani, G., & Ghoraishi, S. G. (2009). Relative salt tolerance of South Khorasan millets. Desert, 14, 63-70.
Kaya, C., Tuna, A. L., & Okant, A. M. (2010). Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal of Agriculture and Forestry, 34(6), 529-538. DOI: 10.3906/tar-0906-173
Kumari, S., Kumar, S., & Prakash, P. (2018). Exogenous application of cytokinin (6-BAP) ameliorates the adverse effect of combined drought and high temperature stress in wheat seedling. Journal of Pharmacognosy and Phytochemistry, 7(1), 1176-1180.
Lugojan, C., & Ciulca, S. (2011). Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology, 15(2), 173-177.
Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398.
Mahrokh, A.,  Nabipour, M., Roshanfekr H.A., & Choukan, R. (2019). Response of some grain maize physiological parameters to drought stress and application of auxin and cytokinin hormones. Environmental Stresses in Crop Sciences, 12(1), 1-15. (In Persian)
Mamedi, A., Tavakkol Afshari, R., & Sepahvand, N.A. (2017). Quantifying seed germination response of quinoa (Chenopodium quinoa Willd) under temperature and drought stress regimes. Iranian Journal of Field Crop Science, 48(3), 615-623. (In Persian)
Mehraban, A., & Ghanjali, H. (2014). Effect of water stress and spraying cytokinin hormone on hamoon wheat variety in sistan region. Indian Journal of Fundamental and Applied Life Sciences, 4, 814-818. (In Persian)
Mohammadi, M., Tavakoli, A. & Saba, J. (2014). Effects of foliar application of 6-benzylaminopurine on yield and oil content in two spring safflower (Carthamus tinctorius L.) cultivars. Plant Growth Regulation, 73(3), 219-226.
Nagar, S., Ramakrishnan, S., Singh, V. P., Singh, G. P., Dhakar, R., Umesh, D. K., & Arora, A. (2015). Cytokinin enhanced biomass and yield in wheat by improving N-metabolism under water limited environment. Indian Journal of Plant Physiology, 20(1), 31-38.
Niakan, M., & Ahmadi, A. (2014). Effects of foliar spraying kinetin on growth parameters and photosynthesis of tomato under different levels of drought stress'. Iranian Journal of Plant Physiology, 4(2), 939- 947. (In Persian)
Opabode, J. T., & Owojori, S. (2018). Response of African eggplant (Solanum macrocarpon L.) to foliar application of 6-benzylaminopurine and gibberellic acid. Journal of Horticultural Research, 26(2), 37-45. DOI:
Rampino, P., Pataleo, S., Gerardi, C., Mita, G., & Perrotta, C. (2006). Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell & Environment, 29(12), 2143-2152. doi: 10.1111/j.1365-3040.2006.01588.x
Ruiz, K. B., Biondi, S., Oses, R., Acuna-Rodriguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., Bazile, D., Jacobsen, S. E., & Molina-Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34, 349-359.
Sadak, M. S. (2016) Mitigation of drought stress on fenugreek plant by foliar application of trehalose. International Journal of Chemistry Technology Research, 9, 147-155.
Salehifar, M., Rabiei, B., Mohammadian, M. A., & Asghari, J. (2017). Physiological and fluorescence reaction of four rice genotypes to exogenous application of IAA and kinetin under drought stress. Notulae Scientia Biologicae, 9(3), 378-385.
Sanchez-Rodriguez, E., Rubio-Wilhelmi, M., Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., Romero, L., & Ruiz, J. M. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178, 30-40. j.plantsci.2009.10.001
Saneoka, H., Moghaieb, R. E., Premachandra, G. S., & Fujita, K. (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris. Environmental and Experimental Botany, 52(2), 131-138.
Sanghera, G. S., Wani, S. H., Hussain, W., & Singh, N. B. (2011). Engineering cold stress tolerance in crop plants. Current Genomics, 12(1), 30-43. doi: 10.2174/138920211794520178
Sarfraz Ardakani, M. (2019). Effect of cytokinin and brassinosterold on some biochemical and physiological traits of wheat cultivars under drought tension at generative stage. Scientific Journal of Crop Physiology, Islamic Azad university Ahvaz, 11(43), 5-24. (In Persian)
Sepehri, A., & Rouhi, H. R. (2017). Effect of cytokinin on morphological and physiological characteristics an antioxidant enzymes activity of aged groundnut (Arachis hypogaea L.) seeds under drought stress. Iranian Journal of Seed Science and Technology, 5(2),181-198.(In Persian)
Sun, Y., Liu, F., Bendevis, M., Shabala, S., & Jacobsen, S. E. (2014). Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. Journal of Agronomy and Crop Science, 200(1), 12-23.
Talebnejad, R., & Sepaskhah, A. R. (2015). Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa. Agricultural Water Management, 159, 225-238.
Telahigue, D. C., Yahia, L. B., Aljane, F., Belhouchett, K., & Toumi, L. (2017). Grain yield, biomass productivity and water use efficiency in quinoa (Chenopodium quinoa Willd.) under drought stress. Journal of Scientific Agriculture, 222-232.
Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547.
Veselov, D. S., Kudoyarova, G. R., Kudryakova, N. V., & Kusnetsov, V. V. (2017). Role of cytokinins in stress resistance of plants. Russian Journal of Plant Physiology, 64(1), 15-27. /10.1134 /S1021443717010162
Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4(3), 162-176.
Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., & Schmülling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. The Plant Cell, 22(12), 3905-3920.
Yang, A., Akhtar, S.S., Amjad, M., Iqbal, S., & Jacobsen, S.E. (2016). Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science, 202(6), 445-453.
Zaheer, M. S., Raza, M. A. S., Saleem, M. F., Erinle, K. O., Iqbal, R., & Ahmad, S. (2019). Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Communications in Soil Science and Plant Analysis, 50(20), 2521-2533. /00103624.2019.1667376
Zlatev, Z., & Lidon, F. C. (2012). An overview on drought induced changes in plant growth, water relationsand photosynthesis. Emirates Journal of Food and Agriculture, 24(1), 57-72
Zwack, P. J., & Rashotte, A. M. (2015). Interactions between cytokinin signalling and abiotic stress responses. Journal of Experimental Botany, 66(16), 4863-4871.