Document Type : Research Paper

Authors

1 M.Sc. Student, Horticulture Department, College of Agriculture and Natural Resources, Persian Gulf University, Bushehr, Iran

2 Assistant Professor, Horticulture Department, College of Agriculture and Natural Resources, Persian Gulf University, Bushehr, Iran

3 Assistant Professor, Horticulture Department, College of Agriculture and Natural Resources, Persian Gulf University, Bushehr, Iran.

4 Associate Professor, Department of Chemical Engineering, College of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.

Abstract

In order to study the effect of organic amendment application on the growth and biochemical characteristics of French marigold (Tagetes patula) in soil contaminated with different levels of gas condensate, a factorial experiment was conducted based on a completely randomized design with three replications. The experimental factors consisted of gas condensate at five levels of 0, 7,500, 15,000, 30,000 and 60,000 μL per kg of soil, and soil amendment including vermicompost (5%), biochar (2%), Activated carbon (1%), vermicompost+ activated carbon+ biochar and non-amendment treatments. The results of the analysis of variance showed that the main and interactive effects of gas condensate and soil amendments were significant on traits of fresh and dry weight of root and shoot, chlorophyll a and b and proline content (P < 0.01). At the highest level of contaminant, the application of activated carbon and vermicompost+ activated carbon+ biochar respectively caused 3.82 and 4.45-fold increase in shoot fresh weight, 3.76 and 4.4-fold increase in root fresh weight, 2.52 and 2.56-fold increase in chlorophyll a, and also decreased 30.66 and 39.5 percent of proline content compared to the non-amendment treatment at this level of contaminant. The results of this research indicated the effective and useful role of organic soil amendment, especially activated carbon and vermicompost+ activated carbon+ biochar in reducing the toxicity of gas condensate on French marigold.

Keywords

Agbogidi, O. M. (2011). Effects of crude oil contaminated soil on biomass accumulation in Jatropha curcas L. seedlings. Journal of Ornamental and Horticultural Plants, 1(1), 43-49. (in Persian)
Anjum, S. A., Farooq, M., Xie, X. Y., Liu, X. J. & Ijaz, M. F. (2012). Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Scientia Horticulturae, 140(1), 66-73. DOI: 10.1016/j.scienta.2012.03.028
Arancon, N. Q., Edwards, C. A., Bierman, P., Welch, C. & Metzger, J. D. (2004). Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresource Technology, 93(2), 145-153. DOI: 10.1016/j.biortech.2003.10.014
 
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.
Atiyeh, R. M., Arancon, N., Edwards, C. A. & Metzger, J. D. (2000). Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology, 75(3), 175-180. https://doi.org/10.1016/S0960-8524(00)00064-X
Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q. & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technolog, 84(1), 7-14. DOI: 10.1016/s0960-8524(02)00017-2
Barati, M., Bakhtiari, F., Mowla, D. & Safarzadeh, S. (2017). Total petroleum hydrocarbon degradation in contaminated soil as affected by plants growth and biochar. Environmental Earth Sciences, 76(20), 688. DOI: 10.1007/s12665-017-7017-7
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.
Beesley, L., Moreno-Jiménez, E. & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282-2287. DOI: 10.1016/j.envpol.2010.02.003
Brändli, R. C., Hartnik, T., Henriksen, T. & Cornelissen, G. (2008). Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere, 73(11), 1805-1810. DOI: 10.1016/j.chemosphere.2008.08.034
Brennan, A., Jiménez, E. M., Alburquerque, J. A., Knapp, C. W. & Switzer, C. (2014). Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environmental Pollution, 193(1), 79-87. DOI: 10.1016/j.envpol.2014.06.016
Chirakkara, R. A. & Reddy, K. R. (2015). Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecological Engineering, 85, 265-274. DOI: 10.1016/j.ecoleng.2015.09.029
Cornelissen, G. & Gustafsson, Ö. (2004). Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environmental Science & Technology, 38(1), 148-155. DOI: 10.1021/es034776m
Deka, S. & Deka, H. (2012). Vermicompost assisted phytoremediation for abatement of crude oil contaminated soil. In Proceedings of International Conference on Anthropogenic Impact on Environment & Conservation Strategy, 1,131-136.
Hale, S. E., Elmquist, M., Brändli, R., Hartnik, T., Jakob, L., Henriksen, T. & Cornelissen, G. (2012). Activated carbon amendment to sequester PAHs in contaminated soil: A lysimeter field trial. Chemosphere, 87(2), 177-184. DOI: 10.1016/j.chemosphere.2011.12.015
Han, T., Zhao, Z., Bartlam, M. & Wang, Y. (2016). Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. Environmental Science and Pollution Research, 23(21), 21219-21228. DOI: 10.1007/s11356-016-7236-6
Huang, X. D., El-Alawi, Y., Penrose, D. M., Glick, B. R. & Greenberg, B. M. (2004). Responses of three grass species to creosote during phytoremediation. Environmental Pollution, 130(3), 453-463. DOI: 10.1016/j.envpol.2003.12.018
Katz, D. L. V. & Lee, R. L. (1990). Natural gas engineering: production and storage. McGraw-Hill Education . New York, United States.
Khan, D. & Shaukat, S. S. (2009). Effects of diesel oil-polluted soil on emergence and growth of seedlings of Thespesia populnea (L.) Sol. Ex. Corr. International Journal of Biology and Biotechnology, 6(4), 289-298.
Khan, S., Waqas, M., Ding, F., Shamshad, I., Arp, H. P. H. & Li, G. (2015). The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). Journal of Hazardous Materials, 300(1), 243-253. DOI: 10.1016/j.jhazmat.2015.06.050
Kołtowski, M. & Oleszczuk, P. (2016). Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals. Environmental Toxicology and Chemistry, 35(5), 1321-1328. DOI: 10.1002/etc.3246
Kołtowski, M., Hilber, I., Bucheli, T. D., Charmas, B., Skubiszewska-Zięba, J. & Oleszczuk, P. (2017). Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils. Chemical Engineering Journal, 310(1), 33-40. DOI: 10.1016/j.cej.2016.10.065
Martía, M. C., Camejoa, D., Fernández, N., Rellán, A. R., Marquesc, S., Sevilla, F. & Jiméneza, A. (2009). Effect of oil refinery sludges on the growth & antioxidant system of alfalfa plants, Journal of Hazardous Materials, 171, 879-885. DOI: 10.1016/j.jhazmat.2009.06.083
Merkl, N., Schultze-Kraft, R. & Infante, C. (2004). Phytoremediation in the tropics—the effect of crude oil on the growth of tropical plants. Bioremediation Journal, 8(3-4), 177-184. DOI: 10.1080/10889860490887527
Morsy, A. A., Hassanein, A. A. & El-Refaai, H. O. (2012). Ecophysiological responsesof grey mangrove (Avicennia marina) (Forssk.) Vierh. to Oil Pollution at RasMohammed protective area. Report and Opinion, 4(8), 43-56. DOI: 10.1155/2018/7404907
Noori, A., Zare Maivan, H., Alaie, E. & Newman, L. A. (2018). Leucanthemum vulgare L. crude oil phytoremediation. International Journal of Phytoremediation, 20(13), 1292-1299. https://doi.org/10.1080/15226514.2015.1045122
Ogedegbe, A. U., Ikhajiagbe, B. & Anoliefo, G. O. (2013). Growth response of Alternanthera brasiliana (L.) Kuntze in a waste engine oil-polluted soil. Journal of Emerging Trends in Engineering and Applied Sciences, 4(2), 322-327.
Omosun, G., Markson, A. A. & Mbanasor, O. (2008). Growth and anatomy of Amaranthus hybridus as affected by different crude oil concentrations. American-Eurasian Journal of Scientific Research, 3(1), 70-74.
Peer, W.A., Baxter, I.R., Richards, E.L., Freeman, J. L. & Murphy, A. S. (2005). Phytoremediation and hyperaccumulator plants. In Molecular biology of metal homeostasis and detoxification (pp. 299-340). Springer, Berlin, Heidelberg. Germany
Peng, S., Zhou, Q., Cai, Z. & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of hazardous materials. 168(2-3), 1490-1496. DOI: 10.1016/j.jhazmat.2009.03.036
Pignatello, J. J., Kwon, S. & Lu, Y. (2006). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environmental Science & Technology, 40(24), 7757-7763. DOI: 10.1021/es061307m
Qin, G., Gong, D. & Fan, M. Y. (2013). Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. International Biodeterioration & Biodegradation, 85, 150-155. DOI: 10.1016/j.ibiod.2013.07.004
Rekha, G. S., Kaleena, P. K., Elumalai, D., Srikumaran, M. P. & Maheswari, V. N. (2018). Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. International Journal of Recycling of Organic Waste in Agriculture, 7(1), 83-88. https://doi.org/10.1007/s40093-017-0191-5
Reynoso-Cuevas, L., Gallegos-Martinez, M. E., CruzSosa, F. & Gutierrez-Rojas, M. (2008). In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresource Technology, 99, 6379-6385. DOI: 10.1016/j.biortech.2007.11.074
Saraeian, Z., Etemadi, N., Haghighi, M., Hajabbassi, M. A. & Afyuni, M. (2015). The effects of petroleum contaminated soil on germination and morphophysiological characteristics of wheatgrass (Agropyron desertorum) for landscape design. Journal of Plant Process and Function, 4(11), 87-98. (in Persian)
Shahriari, M. H., Savaghebi-Firrozabadi, G. R., Minai-Tehrani, D. & Padidaran, M. (2006). The effect of mixed plants alfalfa (Medicago sativa) and fescue (Festuca arundinacea) on the phytoremediation of light crude oil in soil. Environmental Sciences, 13(1), 33-40 (in Persian)
ValizadehRad, K., Motesharezade, B. & Alikhani, H. A. (2015). Effect of compost and PGPR on Calotropis Procera growth in crude oil-contaminated soil. Journal of Land Management, 3(1), 83-96. (in Persian)
Zand, A. D., Bidhendi, G. N. & Mehrdadi, N. (2010). Phytoremediation of total petroleum hydrocarbons (TPHs) using plant species in Iran. Turkish Journal of Agriculture and Forestry, 34(5), 429-438. DOI: 10.3906/tar-0903-2