Document Type : Research Paper

Authors

1 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

2 Associate Professor, Horticultural Department, College of Agriculture, University of Guilan, Rasht, Iran.

3 Associate Professor, Horticultural Department of Seed and Plant Improvement Institute (SPII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran

Abstract

The types of scion-rootstock compound and level of salinity affect on almond biochemical reactions. In order to evaluate the effect of salinity stress on biochemical reactions of almond genotypes, a experiment was carried out with 2 factors; cultivar in 4 levels including Shahrood 12, Touno, 1- 16 budded on GF677 rootstock and GF677 and water salinity in five levels including 0, 1.2, 2.4, 3.6 and 4.8 g/l of sodium chloride salt (that electrical conductivity equal to 0.5, 2.5, 4.9, 7.3 and 9.8 ds/m, respectively). The result showed that in the total genotypes studied, with increasing salinity concentration to treatment 4.8 gr/lit, were increased content of hydrogen peroxide, malondialdehyde, others aldehyde. Also, content of total phenolics, antioxidant capacity, soluble carbohydrate, prolin, total soluble proteins, enzymes activity of catalase, ghayacol peroxidase and ascorbat peroxidase in the total genotypes studied, in begging, with increasing salinity concentration, were increased but with more increasing salinity concentration, those contents were reduced. Overall, the highest content of total soluble proteins, enzymes activity of catalase, ghayacol peroxidase and ascorbat peroxidase in level of salinity 3.6 gr/lit and the highest content of total phenolics, antioxidant capacity, soluble carbohydrate and prolin in level of salinity 4.8 gr/lit and lowest content of hydrogen peroxide, malondialdehyde, others aldehyde and total non-soluble carbohydrate in levels of salinity 3.6 and 4.8 gr/lit were observed in ‘Shahrood 12’ cultivar. Overall, of between total genotypes studied, Shahrood 12’ was recognized as the most tolerant cultivar to salinity stress.

Keywords

اورعی م،  طباطبایی ج، فلاحی ا و ایمانی ع ( 1388). اثرات تنش شوری و پایه بر رشد، شدت فتوسنتز، غلظت عناصر غذایی و سدیم درخت بادام. علوم باغبانی ایران. 23 (2): 140-131
حیدری شریف آباد ح (1380). گیاه و شوری. موسسه تحقیقات جنگل­ها و مراتع. 76 صفحه.
رهنمون ح، شکاری ف، دژم پور ج و خورشیدی م ب (1392). تأثیر سطوح مختلف شوری روی برخی تغییرات مورفولوژیکی و بیوشیمیایی بادام (Prunus dulcis Mill.). به­زراعی کشاورزی. 15 (2):192-179.  
رهنمون ح، قاسیموف نعمت ع، شکاری ف و علی اصغرزاده ن (1388). تاثیر تنش شوری روی برخی رفتارهای اکوفیزیولوژیکی نژادگان­های گزینش­شده بادام (Prunus amygdalus B.). علوم و فنون باغبانی ایران. 10 (2): 167-176.
علایی ش و تفضلی ع (1382). اثر های شوری کلرید سدیم, کینتین و سایکوسل بر تجمع برخی از عناصر در زیتون (Olea europea L.) رقم دزفول. علوم و فنون باغبانی ایران. 4 (1 و 2): 10-1.
غلامی، م و راحمی م (1389). بررسی اثرات تنش شوری کلرید سدیم بر خصوصیات فیزیولوژیکی و مورفولوژیکی پایه رویشی هیبرید هلو- بادام ((GF677. فناوری تولیدات گیاهی. 2 (1): 31-21.
مومن پور ع، ایمانی ع، بخشی د و رضایی ح (1393). ارزیابی تحمل به شوری در برخی از ژنوتیپ های بادام پیوند شده روی پایه GF677 بر اساس صفات مورفولوژیک و فلورسانس  کلروفیل. فرآیند و کارکرد گیاهی. 3 (10): 28-9
مؤمن پور ع، بخشی د، ایمانی ع و رضایی ح (1394). ارزیابی خصوصیات رشدی و غلظت عناصر غذایی در چهار ژنوتیپ بادام پیوندشده روی پایه GF677 تحت تنش شوری. علوم باغبانی ایران. 64 (3):624-603.
مومن پور ع، بخشی د، ایمانی ع و رضایی ح (1394). اثر تنش شوری بر خصوصیات رشدی و غلظت عناصر غذایی در رقم­های بادام ’شاهرود 12‘، ’تونو‘ و ژنوتیپ ’16-1‘ پیوندشده روی پایه GF677. به­زراعی کشاورزی. 17 (1): 216-197.
میرمحمدی میبدی س ع و قره ­یاضی ب (1381). جنبه‌های فیزیولوژیک و بهنژادی تنش شوری گیاهان. انتشارات دانشگاه صنعتی اصفهان. 274 صفحه.
Ashraf M and Harris PJC  )2003). Potential biochemical indicators of salinity tolerance in plants. Plant Science. 166: 3-16.
Bakhshi D and Arakawa O (2006). Effects of UV-B irradiation on phenolic compound accumulation and antioxidant activity in ‘Jonathan’ apple influenced by bagging, temperature and maturation. Food, Agriculture and Environment. 4 (1): 75-79.  
Bartles D and Sunkar R )2005) Drought and salt tolerance in plants: a review. Plant Science. 24: 23-58. 
Bates LS, Waldren RP and Teare LD (1973). Rapid determination of free proline for water stress studies. Plant and Soil Science. 39: 205-208.
Beauchamp CO and Fridovich I (1971). Superoxide dis­mutase: improved assays and an assay applicable to acry­lamide gels. Annual Review of Biochemistry. 44: 276-287.
Bradford MM )1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Review of Biochemistry. 72: 248-254.
Cesarino IA, Araújo P, Sampaio M JL, Paes LAF and Mazzafera P (2012) Enzymatic activity and proteomic profile of class III peroxidases during sugarcane stem development. Plant Physiology and Biochemistry. 55: 66-76.
Chance B and Maehly AC (1955) Assay of catalases and peroxidase. In: Colowickand SP and Kaplan NO (Eds.), Methods inEnzymology. New York Academic Press, pp. 764-775.
Du G, Li F, Ma F and Liang D (2009) Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chemistry. 113: 557-562.
Erturk U, Sivritepe N, Yerlikaya C, Bor M, Ozdemir F and Turkan I )2007) Responses of the cherry rootstock to salinity in vitro. Biologia Plantarum. 51: 597-600.
Grattan SR (2002) Irrigation water salinity and crop production. University of California. Agriculture and Natural Recourses Publication. 8066.
Heath RL and Packer L (1969). Photoperoxidation in isolated chloroplast, I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125: 189-198.
Karamanos AJ )1995) The involvement of Proline and some metabolites in water stress and their importance as drought resistance indicators. Plant Physiology. 21(2-3): 98-110.
Kochert G  )1987) Carbohydrate determination by the phenolsulfuric acid method. in Helebus Cambrige Univ. Press, Cambridge.
Levitt J )1980) Responses of plants to environmental stresses: water, radiation, salt and other stresses. Vol. II. Academic Press, New York.
Maas EV and Hoffman GJ (1977) Crop salt tolerance: current assessment. Journal of Irrigation and Drainage Engineering. 103: 115- 134.
Mahajan Sh and Tuteja N )2005) Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics. 444: 139-158.
Montaium R, Hening H and Brown PH (1994) The relative tolerance of six Prunus rootstocks to boron and salinity. American Society for Horticultural Science. 6: 1169-1175.
Mousavi A, Lessani H, Babalar MA, Talaei R and Fallahi E (2008) Influence of salinity on chlorophyll, leaf water potential, total soluble sugars and mineral nutrients in two young olive plants. Plant Nutrition. 31(11): 1906-1916.
Munns R and Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651-681.
Nakano Y and Asada K )1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell and Environment. 22: 867-880.
Singleton VL, Orthofer R, and Lamuela-Raventos R (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 299: 152-178.
Sorkheh K, Shiran B, Rouhi V and Khodambashi M (2012). Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Plant Physiology. 34: 203-213.
akeda T, Yokota A and Shigeoka S (1995) Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiology. 36: 1089-1095.
Velikova V, Yordanov I and Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science. 151: 59-66.
Vogt T (2010) Phenyl propanoid biosynthesis. Molecular Plant. 3: 2-20.
Zhang J and Kirkham MB (1996) Enzymatic responses of the acrobat-glutathione cycle to drought in sorghum and sunflower. Plant Science. 113: 139-147.