1 . Al-Karaki G (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10: 51-54.
2 . Al-Karaki G and Hammad NR (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. Plant Nutrition. 24(8): 1311-1323
3 . Bierman B and Linderman R (1981) Quantifying vesicular arbuscular mycorrhizae: Proposed method towards standardization. New Phytologist. 87: 63-67.
4 . Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities in utilizing the principle of protein dye binding. Analytical Biochemistry. 72: 254-284.
5 . Cakmak I and Horst W (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glycine max). Plant Physiology. 83: 463-468.
6 . Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D and Van Breusegem F (2000) Dual action of the active oxygen species during plant Stress Responses. Cellular and Molecular Life Sciences. 57: 779-795.
7 . Ghanati F, Morita A and Yokota H (2002) Induction of suberin and increase of lignin content by excess Boron in Tabacco cell. Plant Nutrition. 48: 357-364.
8 . Giannopolitis C and Ries S (1977) Superoxide dismutase. I. Occurence in higher plant. Plant Physiology. 59: 309-314.
9 . Glick BR (1995) The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology. 41: 109-117.
10 . Gossett DR, Millhollon EP and Lucas MC (1994) Anti oxidant response to NaCl stress in Salt-tolerant and Salt-sensitive cultivars of cotton. Crop Science. 34: 706-714.
11 . Gupta N and Rutaray S (2005) Growth and development of AM fungi and maize under salt and acid stress. Acta Agricultural Scandinavia, Section B, Soil and Plant Science. 55: 151-157.
12 . Halliwell B and Gutteridge JM (1989) Protection against oxidants in biological systems: The superoxide theory of oxygen toxicity, free radicals in biology and medicine, Halliwell, B. and Gutteridge, J. M. C, Eds., Oxford: Clarendon. Pp. 86-123.
13 . Harinasut P, Poonsopa D, Roengmongkol K and Charonsataprom R (2003) Salinity effects on antioxidant enzymes in Mulberry cultivar. Science Asia. 29: 109-113.
14 . Jahromi F, Aroca R, Porcel R and Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo Physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology. 55: 45-53.
15 . Jimenez A, Hernandez JA, Del Rio LA and Sevilla F (1997) Evidence for the presence of the ascorbateglutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology. 114: 275-284.
16 . Jindal V, Atwal A, Sekhon BS and Singh R (1993) Effect of vesicular arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiology and Biochemistry. 31: 475-481.
17 . Juniper S and Abbott L (1993) Vesicular arbuscular mycorrhizas and soil salinity. Mycorrhiza. 4: 45-5.
18 . Mathur N and Vyas A (1996) Biochemical changes in Ziziphus xylopyrus by VA mycorrhizae. Botanical Bulletin of Academia. 37: 209-212.
19 . McMillen BG, Juniper S and Abbott LK (1998) Inhibition of hyphal growth of a Vesicular arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biology and Biochemistry. 30: 1639-1646.
20 . Netondo GF, Onyango JC and Beck E (2004) Crop physiology and metabolism. Sorghoum and salinity: I. Response of growth, water relation and ion accumulation to Nacl salinity. Crop Society of America. 44: 797-805.
21 . Neumann P (1977) Salinity resistance and plant growth revised. Plant Cell and Environment. 20: 1193-1198.
22 . Nunez M, Mazzafera P, Mazorra LM, Siquira WJ and Zullo MA (2003) Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Plant Biology. 47: 67-70.
23 . Ojala J, Jarrell C, Menge MW and Johnson JA (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomy. 75: 225-259.
24 . Phillips J and Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55: 158-161.
25 . Porcel R, Barea JM and Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol. 157: 135-143.
26 . Prasad MNV (1997) Plant ecophysiology. John Wily and Sons. Inc.
27 . Rabie GH and Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Biotecnology. 4(3): 210-222.
28 . Ruiz-Lozano JM, Collados C, Barea JM and Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytologist. 151: 493-502.
29 . Saleh M and Al-Garni S (2006) Increased heavy metal tolerance of cowpea plant by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. African Biotecnology. 5(2): 133-142.
30 . Simpson D and Daft MJ (1990) Interactions between water-stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil. 121: 179-186.
31 . Xiong L, Schumaker KS and Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell. 165-183.
32 . Younesi O, Moradi A and Namdari A (2013) Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean (Glycine max). Acta agriculturae Slovenica, 101-2, September 2013 str. 219-230.