Document Type : Research Paper

Authors

1 Former M.Sc. Student, Department of Horticulture, Faculty of plant production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Assistant Professor, Department of Horticulture, Faculty of plant production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Modern biotechnology and genetic engineering using techniques and special ‎laboratory tools plays an important role in the pharmaceutical industry and medicinal ‎plant propagation. Among these techniques, it can be noted that a wide range of ‎elicitors are widely used for inducing metabolites at invitro culture. Due to the ‎pharmaceutical properties of artichoke and its history, it has been deeply noticed by ‎pharmaceutical industry and its cultivation is expanding rapidly. In present study the ‎effect of two elicitors' methyl jasmonate (MJ) and salicylic acid (SA) on the callus ‎mass growth and survival of invitro culture was investigated. Callus cultures of ‎artichoke were established by transferring seedling on solidified MS medium ‎supplemented with different concentrations of salicylic acid and methyl jasmonate. ‎Four weeks after subculture, the callus was collected and weighed. Results showed ‎that the SA supplementation reduced fresh weight of callus. Contrary to fresh weight, ‎a direct increase was observed in dray weight by increasing the level of SA. Opposite ‎to SA different concentration of MJ not only did not changed the fresh weight, but ‎also reduced the dry weight of callus. Study the pigment changes under different ‎treatments of SA and MJ showed that, contrary to cartonoid a direct reduction was ‎observed in chlorophyll content by increasing in both SA and MJ concentration. ‎Finally it can be suggested that, however both SA and MJ as most important elicitors ‎increase secondary metabolite production of callus, their availability in high ‎concentration affect the cell grow activity, callus survival and the biomass production.‎

Keywords

1 . پرجود م و آروین س م ج (1390) بررسی اثرات تنظیم­کننده رشد گیاهی متیل‌جاسمونات بر روابط آبی و رشد گیاه طالبی تحت شرایط خشکی در مزرعه. یازدهمین سمینار سراسری آبیاری و کاهش تبخیر. دانشگاه شهید باهنر.
2. رضایی ا ا، قناتی ف و بهمنش م (1390) افزایش تولید و آزادسازی تاکسول توسط متیل‌جاسمونات، امواج فراصوت و دی‌بوتیل فتالات در کشت سلولی فندق (Corylusavellana L.). زیست‌شناسی گیاهی. 3(7): 55-72.
3. سلیمانی م، شیرآلی م، شریفی س و لطفی م (1388) بیوتکنولوژی در گیاهان دارویی و محرک‌ها (Elicitors) راهکارهایی برای افزایش تولید ترکیبات دارویی. همایش منطقه‌ای غذا و بیوتکنولوژی دانشگاه آزاد اسلامی واحد کرمانشاه: 1-4.
4. ضیایی س، دست­پاک ا، نقدی بادی ح، چورحسینی ل، همتی مقدم ا و غروی نائینی م (1383) مروری بر گیاه کنگرفرنگی (.Cynarascolymus L). گیاهان دارویی. 4(13): 1-10.
5. طباطبایی ب ا ا و امیدی م (1388) کشت بافت و سلول گیاهی. چاپ اول، انتشارات دانشگاه تهران، ص 368.
6. علیزاده م (1390) راهنمای کاربران کشت بافت گیاهی و ریزازدیادی. انتشارات نوروزی گرگان. 322 ص.
7. فهیمی ح (1387) تنظیم‌کننده‌های رشد گیاهی. ویراست دوم، انتشارات دانشگاه تهران، تهران. 214 ص.
8. قاسمی‌بزدی ک و احمدی ا (1388) بیوتکنولوژی بافت و سلول (در ریزازدیادی و به‌نژادی) (ترجمه).گرگان مختومقلی فراغی، ص 253.
9. لسانی ح و مجتهدی م (1370) مبانی فیزیولوژی گیاهی (ترجمه). انتشارات دانشگاه تهران. ص 738.
10. لسانی ح و مجتهدی م (1374) زندگی گیاه سبز (ترجمه). انتشارات دانشگاه تهران. ص 587.
 
11 . Ananieva K and Ananiev ED (2000) Interaction between methyl ester of jasmonic acid and benzylaldenine during the growth of excised greening cotyledonse of Cucurbita pepo L. (Zuchini). BULG. Journal of Plant Physiology. 26(1-2): 48-57.
12 . Barnes JD, Balaguer L, Manrique E, Elvira S and Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichens and higher plants. Environmental and Experimental Botany. 32(2): 85-90.
13 . Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskaya MV, Glazunov VP, Radchenko SV, Zvereva EV, Fedoreyev SA and Zhuravlev YN (2002) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. Biotechnology. 97: 213-221.
14 . Cag S, Ahir-Oz GC, Sarsag M and Goren-Saglam N (2009) Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pakistanian Journal of Botany. 41(5): 2297-2303.                                                                                                                        
15 . Chen Z, Ricigliano JW and Klessig DF (1993) Purification and characterization of a soluble salicylic acid-Binding protein from tobacco. Proceedings of the National Academy of Sciences. 90: 9533-9537.
16 . Chong TM, Abdullah MA, Fadzillah NM, Lai OM and Lajis NH (2005) Jasmonic acid elicitation of anthraquinones with some associated enzymic and non-enzymic antioxidant responses in Morinda elliptica. Enzyme and Microbial Technology. 36: 469-477.
17 . Creelman RA, Tierney ML and Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proceedings of the National Academy of Sciences. 89: 4938-4941.
18 . Dong HD and Zhong JJ (2001) Significant improvement of taxane production in suspension cultures of Taxus chinensis by combining elicitation with sucrose feed. Biochemical Engineering. 8: 145-50.
19 . Ebel J and Mithofer A (1998) Early events in the elicitation of plant defense. Planta. 206: 335- 348.
20 . Miyamoto K, Oka M and Uedea J (1997) Update in the possible mode of action of Jasmonates: Focus on the metabolism of cell wall polysaccharides in relation to growth and development. Physiologiae Plantarum. 100: 631-638.
21 . Namdeo A (2007) Plant cell elicitation for production of secondary metabolites. Pharmacognosy Review. 1(1): 69-79.
22 . Popova L, Pancheva T and Uzonova A (1997) Salicylic acid: Properties, Biosynthesis and Physiological role. Plant Physiology. 23: 85-93.
23 . Raskin I (1992a) Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology. 43: 439-460.
24 . Raskin I (1992b) Salicylate, A new plant hormone. Plant Physiology. 99: 79-803.
25 . Roustan JP, Lotche A and Fallot J (1989) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis cobalt and nickel. Plant Cell Reports. 8: 182-185.
26 . Rudell DR and Mattheis JP (2002) Methyl jasmonate enhances Anthocyanin accumulation and modifies production of Phenolics and Pigments in Fuji Apples. Journal of American Society of Horticultural Sciences. 127(3): 435-441.
27 . See KS, Bhatt A and Keng CL (2011) Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae). International Journal of Tropical Biology and Conservation. 59(2): 597-606.
28 . Swiatek A, Azmi A, Witters E and Van Onckelen H (2003) Stress messengers Jasmonic acid and Abscisic acid negatively regulate plant cell cycle. Bulgarian Journal of Plant Physiology. Special Issue. Pp. 172-178.
29 . Szabo E, Thelen A and Peterson M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Reports. Pp.  485-489.
30 . Tsuchiya T, Ohta H, Okawa K, Lwamatsu A, Shimada H, Masuda T and Takamiya KI (1995) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proceedings of the National Academy of Sciences. 96(26): 15362-15367.
31 . Yu DQ, Cen CA, Yang ML and Li BJ (1999) Studies on the salicylic acid inducted lipid peroxidation and defense gene expression in tobacco cell culture. Acta Botanica Sinica. 41: 977-983.
32 . Yu KW, Gao W, Hahn EJ and Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochemical Engineering. 11: 211-5.
33 . Yu LJ, Lan WZ, Qin WM and Xu HB (2001) Effects of salicylic acid on fungal elicitor induced membrane-lipid peroxidation and Taxol production in cell suspension cultures of Taxus chinensis. Process. Biochemical. 37: 477-482.