1 . Abdul-Baki AA and Aderson JD (1983) Vigor determination in soybean by multiple criteria. Crop Sciences. 13: 630-633.
2 . Ashraf M and Foolad MR (2005) Pre-sowing seed treatment-a shotgun approach to improve germination growth and crop yield under saline and none-saline conditions. Advances in Agronomy. 88: 223-271.
3 . Bashan Y and Holguin G (1997( Azospirillum-plant relationships: environmental and physiological advances. Canadaian Journal of Microbiology.43: 103-121.
4 . Bashan Y, Holguin G and De-Bashan L (2004)Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances. Canadaian Journal of Microbiology. 50: 521-577.
5 . Cattelan AJ, Hartel PG and Fuhrman JJ (1999) Screening for plant growth – promoting Rhizobacteria to promote early soybean growth. American Journal of Soil Science Society. 63: 1670-1680.
6 . Costa M, Civello P, Chaves G and Martinez G (2005) Effect of ethephon and 6-benzylaminopurine on chlorophyII degrading enzymes and a peroxidase- linked chlorophyII bleaching during post-harvest senescence of broccoli (Brassica Oleraceae L.). Postharvest Biology and Technology. 35: 191-199.
7 . Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytologist. 157: 39-49.
8 . Dileep Kumar SB, Berggren I and Martensson AM (2001) Potential for improving pea production by coinoculation with fluorescent Pseudomonas and Rhizobium. Plant and Soil. 229: 25-34.
9 . Elis RH and Roberts EH (1981) Towards a rational basis for testing seed quality. In, Seed Production (ed. P.D. Hebblethwaite), Butterworths London. Pp. 605-645.
10 . Glick BR (1995) The enhancement of plant growth by free-living bacteria. Canadaian Journal Microbiology. 41: 109-117.
11 . Glick BR, Liu C, Ghosh S and Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biology and Biochemistry. 29: 1233-1239.
12 . Glick BR, Penrose D and Wendo M (2001) Bacterial promotion of plant growth. Biotechnology Advances. 19: 135-138.
13 . Grichko VP and Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry. 39: 11-17.
14 . Hafeez FY, Safdar ME, Chaudry AU and Malik KA (2004) Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Australian Journal of Experimental Agriculture. 44: 617-622.
15 . Hampton JG and Tekrony DM (1995) Hanbook of vigour test methods. International Seed Testing Association (ISTA). Zurich, Swirztland. 730 p.
16 . Hunter EA, Glasbey CA and Naylor RE (1984) The analysis of data from germination tests. Agricultural Science. 102: 207-231.
17 . Khan AG (2006) Mycorrhizoremediation-an enhanced form of phytoremediation. Zhejiang University Science Biology. 7: 503-514.
18 . Klee HJ, Hayford MB, Kretzmer KA, Barry GF and Krishore GM (1991) Control of ethylene sysnthesis by expressioof a bacterial enzyme in transgenic tomato plants. Plant Cell. Pp. 1187-1193.
19 . Lamond RE and Whitney DA (1992) Management of saline and sodic soils. KansasState University. Depertment of Agronomy.
20 . Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM and Zaleska I )1987 (Growth promotion of canola (rapeseed) seedling by a strain of Pseudomonas putida under gnotobiotic conditions. Canadaian Journal of Microbiology. 33: 390-395.
21 . Ma W, Sebestianova, BR, Sebestian J, Burd GI,
Guinel FC and Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek. 83: 285-291.
22 . Marguire JD (1962) Speed of germination – aid in selection and evaluation for seedling emergence and vigor. Crop Sciences. 2: 176-177.
23 . Martinez-Beltran J and Manzur CL (2005) Overview
of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the hnternational salinity, Forum Riverside, California. April 2005. Pp. 311-313.
24 . Mass EV and Hoffman GJ (1977) Crop salt tolerance –current assessment. Irrigation and Drainage. 103: 115-134.
25 . Patanea C, Cavallaroa V and Cosentinob S (2009) Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures in dustrial.Ind. Crops and Products. 30: 1-8.
26 . Penrose DM and Glick BR (2003) Methods
for isolating and characterizing ACC deaminase-ontaining plant growth-promoting rhizobacteria. Plant Physiology. 118: 10-15.
27 . Piao Z, Cui Z, Yin B, Hu J, Zhou C, Xie G, Su B and Yin S (2005) Changes in acetylene reduction activities and effects of inoculated rhizosphere nitrogen-fixing bacteria on rice. Biology and Fertility of Soils. 41: 371-378.
28 . Prithiviraj B, Zhou X, Souleimanov A and Smith DL (2000) Nod Bj V (C18: 1MeFuc) a host specific bacterial-to-Plant signal molecule, enhances germination and early growth of diverse crop plants. In: Book of Abstracts, 17th North American Conference on Symbiotic Nitrogen Fixation 23-28 July 2000. Quebec, Canada. 80. University of Laval, p. E6.
29 . Saatovich SZ (2006) Azospirilli of Uzbekistan soils and their influence on growth and development of wheat plants. Plant and Soil. 283: 137-145.
30 . Wue SC, Cao ZH, Li ZG, Cheung KC and Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 125: 155-166.
31 . Yasari E and Patwardhan IS (2007) Effects of Aztobacter and Azospirillium inoculations and chemical fertilizers on growth and productivity of Canola. Asian Journal of Plant Sciences. 6: 77-82.
32 . Zaidi SFA (2003) Inoculation with Bradyrhizobium japonicum and fluorescent Pseudomonas to control Rhizoctonia solani in soybean [Glycine max L. Merr]. Annals of Agricultural Research. 24: 151-153.
33 . Zahir AZ, Arshad M and Frankenberger WF (2004) Plant growth promoting rhizobacteria: aplications and perspectives in agriculture. Advances in Agronomy.
81: 1-97.
34 . Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology. l53: 247-274.