Author

Abstract

In this research, chilling and heating requirements of six local cultivars of apricot (Jafari, Ghavami, Jahangiri, Khiari, Khiveaee and Rajabali) were evaluated under field and lab conditions. Under lab condition, ‘Rajabali’ and in some extent ‘Johangiri’ began flowering after 500 hours in 4°C. Other cultivars except ‘Khiari’ flowered at 750 h. ‘Khiari’ flowered at 1000 h. In field, due to little difference of flowering time among cultivars, there was a low difference in chilling requirement among cultivars in all models. Calculation of chilling requirements based on chilling hours was around 1400 h while based on Utah, North Carolina and Low chilling models was 1000, 740 and 770 unit, respectively. Chilling requirement in all cultivars was 71 portions based on dynamic model calculation. Amount of heating requirement ranged from 1829 growth degree hours (GDH) in ‘Khivea’ to 3387 GDH in ‘Jafari’. Although little differences exist in flowering onset of cultivars, the differentiation of flowering period among cultivars was around one week. Cultivars showed little differences in flowering onset in locations they meet their chilling requirement.

Keywords

1 . دژم­پور ج (1380) تعیین نیاز دمایی در چند رقم تجاری زردآلو در تبریز. نهال و بذر. 17: 20-12.
2 . طلایی ع (1377) فیزیولوژی درختان مناطق معتدله. ترجمه. انتشارات دانشگاه تهران. 421 ص.
 
3 . Anderson JL, Richardson EA and Kesner CD (1986) Validation of chill unit and flower bud phenology models for “Montmorency” sour cherry. Acta Horticulture. 184: 71-78.
4 . Asma BM and Ozturk K (2005) Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. Genetic Resource and Crop Evolution. 52: 305-313
5 . Benedikova D (2004) The importance of genetic resources for apricot breeding in Slovakia. Fruit Ornamental and Plant Research. 12: 107-113
6 . Brown DS (1957) The rest period of apricot flower buds as described by a regression of time of bloom on temperature. Plant Physiolgy. 32: 75-85.
7 . Campoy JA, Ruiz D and Egea J (2011) Dormancy in temperate fruit trees in a global warming context:
A Review. Scientia Horticulture. 130: 357-372
8 . Cesaraccio C, Spano D, Snyder RL and Duce P (2004) Chilling and forcing model to predict bud-burst of
crop and forest species. Agricultural and Forest Meteorology. 126: 1-13.
9 . Citadin I, Raseira MB, Herter FG and Da Silva JB (2001) Heat requirement for blooming and leafing in peach. HortScience. 36: 305-307.
10 . Couvillon GA and Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. American Society for Horticultural Sciences. 110: 47-50.
11 . Dennis FG (2003) Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience. 38: 347-350.
12 . Egea J, Ortega E, Martınez-Gómez P and Dicenta F (2003) Chilling and heat requirements of almond cultivars for flowering. Environmental and Experimental Botany. 50: 79-85.
13 . Ercisli S (2004) A short review of the fruit germplasm resources of Turkey. Genetic Resource and Crop Evolution. 51: 419-435.
14 . Erez A (2000) Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics. In: Erez, A. (Ed.), Temperate Fruit Crops in Warm Climates. Kluwer Academic Publishers, The Netherlands. Pp. 17-48.
15 . Erez A, Fishman S and Linsley-Noakes G (1990) The dynamic model for rest completion in peach buds. Acta Horticulture. 276: 165-174.
16 . Faust M, Sur´anyi D and Nyujt´o F (1998) Origin and dissemination of apricot. In: Janick J (Ed.) Horticultural Reviews, Vol. 22. John Wiley & Sons, Inc. Pp. 225-266.
17 . Fennell A (1999) Systems and approaches to studying dormancy: introduction to the workshop. HortScience. 34: 1172-1173.
18 . Finetto GA (1997) Effect of hydrogen cyanamide treatment after various periods of chilling on breaking endodormancy in apples bud. Acta Horticulture (ISHS). 441: 191-200.
19 . Fishman S, Erez A and Couvillon GA (1987) The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. Theoretical Biology. 124: 473-483.
20 . Gianfagna TJ and Mehlenbacher SA (1985) Importance of heat requirement for bud break and time of flowering in apple. HortScience. 20: 909-911.
21 . Gilreath PR and Buchanan DW (1981) Rest prediction model for low-chilling Sungold nectarine. American Society for Horticultural Sciences. 106: 426-429.
22 . Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sciences. 177: 523-531.
23 . Janick J and Paull ER (2008) The Encyclopedia fruits and nuts. CABI.
24 . Ledbetter CA (2008) Apricots. In:Moore JN and Hancock F. Temperate Fruit Crop Breeding. Germplasm to Genomics. Springer Science Business Media B.V.
25 . Ledbetter CA and Peterson SJ (2004) Utilization of Pakistani apricot (Prunus armeniaca L.) germplasm for improving Brix levels in California adapted apricots. Plant Genetic Resource Newsletter. 140: 14-22.
26 . Linsley-Noakes GC and Allan P (1994) Comparison of two models for the prediction of rest completion in peaches. Scientia Horticulture (Amsterdam). 59: 107-113.
27 . Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont DA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE and Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. Experimental Botany. 58: 1035-1045.
28 . Olsen JE (2010) Light and temperature sensing and signalling in induction of bud dormancy in woody plants. Plant Molecular Biology. 73: 37-47.
 29 . Richardson EA, Seeley SD and Walker DR (1974) A model for estimating the completion of rest for Redhaven and Elberta peach trees. HortScience.
9: 331-332.
30 . Rom R and Arrington EH (1966) The effect of varying temperature regimes on degree days to bloom in the “Elberta” peach. Proc. Am. Soc. HortScience. 88: 239-244.
31 . Ruiz D, Campoy JA and Egea J (2007) Chilling
and heat requirements of apricot cultivars for flowering. Environmental and Experimental Botany. 61: 254-263.
32 . Samish RM and Lavee S (1982) The chilling requirement of fruit trees. In: Proceedings of the XVI International Horticultural Congress. 5: 372-388.
33 . Scorza R and Okie WR (1990) Peaches (Prunus persica L. Batsch). Acta Horticulture. 290: 177-231.
34 . Shaultout AD and Unrath CR (1983) Rest completion prediction model for Starkrimson Delicious apples. American Society for Horticultural Sciences. 108: 957-961.
35 . Sreekantan L, Mathiason K, Grimplet J, Schlauch K, Dickerson JA and Fennell AY (2010) Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. Plant Molecular Biology. 73: 191-205.
36 . Thompson MM (1998) Plant quarantine: a personal experience. Fruit Varity. 52: 215-219.
37 . UC FNRIC )2002( University of California, Davis, Fruit and Nut Research and Information Center. (http://fruitsandnuts.ucdavis.edu).
38 . Weinberger JH (1950) Chilling requirements of peach varieties. American Society for Horticultural Sciences. 56: 122-128.