Authors

Abstract

Photosynthesis, stomatal conductance and leaf water potential characteristics were examined in two plantago species (Plantago ovata Forssk and P. psyllium L.), with gradually improving water stress for several days and permitting to recover by re-watering (withholding for 2, 4, 6, 8 and 10 days) in Melbourne University in 2006. Factorial experiments based on completely randomized design with four replications were used. The photosynthetic rate and stomatal conductance decreased rapidly by withholding water. After re-watering the recovery rate of photosynthesis and stomatal conductance decreased gradually, as the days became longer. The different rates of recovery of photosynthesis and stomatal conductance followed by drought stress. However, the potentional of photosynthesis recovery was more than stomatal conductance. It is also concluded that French psyllium had higher mesophyl and stomatal conductance recovery when compared to Isabgul, although recovery of photosynthesis in Isabgul was higher than French psyllium. The results showed a clear and close correlation between leaf water potential and recovery level of photosynthesis rate and stomatal conductance. A close correlation was also observed between photosynthesis and leaf water potential, stomatal conductance and relative water content.

Keywords

1. احمدی ع. و بیکر د. ا (1379) عوامل روزنه­ای و غیرروزنه­ای محدودکننده فتوسنتز در گندم در شرایط تنش خشکی. علوم کشاورزی. 31(4): 825-813. 
 
2.  Blum A and Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in what. Crop Sci. 21: 43-47.
3. Castrillo M and Trujillo I (1994) Ribulose-1,5-bisphosphate carboxylase activity and chlorophyll and protein content in two cultivars of French bean plants under water stress and rewatering. Photosynthetica. 30: 175-181.
4. Cornic G (1994) Drought stress and high light effects on leaf photosynthesis. In ‘Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field’. (Eds: Baker NR and Bowyer JR) Pp. 297-313. (BIOS: Oxford.)
5. Genty B, Briantais JM and Vieira JB (1987) Effects of drought on primary photosynthetic processes of cotton leaves. Plant Physiol. 83: 360-364.
6. Fischer RA, Rees D, Sayer KD, Lu ZM, Candon AG and Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthesis rate and cooler canopies. Crop Science. 38: 1467-1475.
7. Heckathorn SA, DeLucia EH and Zielinski RE (1997) The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiol. Plantarum. 101: 173-182.
8. Hsiao TC (1973) Plant responses to water stress. Ann. Rev. Plant Physiology 24: 519-570.
9. James AZ and William RG (1998) Leaf water relations and plant development of three freeman maple cultivars subjected to drought. J. Am. Soc. Hortic. Sci. 123: 371-375.
10. Koichi M, Shigemi T, Toshihiko M and Kazuyoshi K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environm. Exp. Bot. 53: 205-214.
11. Kramer JK and Boyer JS (1995) Water Relations of Plants and Soils. Academic Press, California. Pp. 1-495.
12. Lawlor DW (1995) The effects of water deficit on photosynthesis. In ‘Environment and Plant Metabolism. Flexibility and Acclimation’. (Ed. Smirnoff N) Pp. 129-160. (Bios Scientific Publisher: Oxford.)
13. Liang ZF, Zhang M and Zhang J (2002) The relations of stomatal conductance, water consumption, growth rate to leaf water potential during soil during and rewatering cycle of wheat (Triticum aestivum L.). Bot. Bull Acad. Sci. 43: 187-192.
14. Martin B and Ruiz–Torres NA (1992) Effects of water–deficit stress on photosynthesis, its component and component limitations and on water use efficiency in wheat (Triticum aestivum L.). Plant physiol. 100: 733-739.
15. Medrano H, Parry MA, Socías X and Lawlor DW (1997) Long term water stress inactivates Rubisco in subterranean clover. Ann. Appl. Biol. 131: 491-501.
16. Rawsov JM, Turner NC and Begg JE (1978) Agronomic and physiological response of soybean and sorghum crops to water deficits, photosynthesis, transpiration and water use efficiency in leaves. Aust. J. Plant Physiol. 5: 195-209.
17. Subramanian VB and Maheswari M (1990) Stomatal conductance, photosynthesis and transpiration in green gram during, and after relief of, water stress. Indian J. Exp. Biol. 28: 542-544.