Document Type : Research Paper

Authors

1 Research Associate Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Research Assistant Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

3 PhD of Agronomy, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

4 Researcher, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

10.22059/jci.2024.370971.2872

Abstract

Objective: This study was conducted to investigate the possibility of increasing the clover forage yield and quality by changing the seeding rate in monoculture and intercropping systems of Persian clover and crimson clover.
Methods: This research was conducted in a factorial arrangement using a randomized complete block statistical design with three replications at the Seed and Plant Improvement Institute in Karaj, Iran, during the cropping seasons 2021-22 and 2022-23. Experimental treatments involved five cropping systems (Persian clover monoculture, crimson clover monoculture, and different intercropping systems of these two species: 25% Persian clover+ 75% crimson clover, 50% Persian clover+ 50% crimson clover, and 75% Persian clover+ 25% crimson clover). Two seeding rates, 20 and 25 kg ha-1, were also examined. The evaluated traits comprised dry forage yield, plant height, and ten characteristics related to the nutritional value of the forage.
Results: The results showed that forage yield and quality of clover were significantly affected by cropping system and seeding rate. In general, monoculture systems and seeding rate of 25 kg ha-1 had higher quantitative yield, whereas intercropping systems and seeding rate of 20 kg ha-1 had higher forage quality. The highest dry forage yield was obtained in the monoculture cropping systems of crimson clover with seeding rates of 25 and 20 kg ha-1, and in the monoculture cropping system of Persian clover with a seeding rate of 25 kg ha-1, producing 4.24, 3.93, and 3.73 tons of dry matter per hectare, respectively. The intercropping system of 50% Persian clover+ 50% crimson clover significantly increased the relative feed value of forage compared to monoculture systems, and the seeding rate of 20 kg ha-1 with a feed value of 162% improved the superiority of this cropping system. Monoculture of crimson clover at both seeding rates and monoculture of Persian clover at the seeding rate of 25 kg ha-1 were in the superior statistical group in terms of total dry forage yield.
Conclusion: Monoculture of crimson clover with a seeding rate of 25 kg ha-1 had higher quantitative yield, whereas intercropping of 50% Persian clover+ 50% crimson clover with a seeding rate of 20 kg ha-1 had higher forage quality. In the current conditions where forage quality plays no role in determining its purchase price, monoculture of crimson clover would be more profitable for farmers. However, intercropping of 50% Persian clover+ 50% crimson clover could be beneficial for farmer-livestock producers in enhancing dairy production.

Keywords

زمانیان، محمد؛ اکبری‌راد، محمد؛ عباسی، محمدرضا؛ مهرانی، اردلان؛ مقدم، علی و طریفی‌نیا، ناصر (1391). البرز1، رقم جدید شبدر لاکی مناسب نظام‌های زراعی مبتنی بر کشت شبدر. یافتههای تحقیقاتی در گیاهان زراعی و باغی، 1(2)، 115-107.
زمانیان، محمد؛ گل‌زردی، فرید؛ ماهرخ، علی؛ عزیزی، فرهاد؛ ترابی، مسعود؛ قطبی، ویدا؛ مفیدیان، محمدعلی؛ رهجو، وحید و سلطانی، الیاس (1402). فراتحلیل عوامل زراعی محدودکننده تولید علوفه شبدر در ایران. بهزراعی کشاورزی، 25(2)، 451-467.
 جوانمرد، عبدالله؛ امانی ماچیانی، مصطفی و اسکندری، حمدالله (1398). ارزیابی کمی و کیفی علوفه در کشت مخلوط جو (Hordeum vulgare L.) و نخود فرنگی (Pisum sativum L.) در شرایط دیم مراغه. بومشناسی کشاورزی، 11(2)، 435-425.
نوربخشیان، سید جلیل (1394). تأثیرتاریخ‌های کاشت و مقادیر مختلف بذر بر عملکرد علوفه شبدر برسیم در نظام کشت دوم در منطقه شهرکرد. پژوهش‌های کاربردی زراعی، 28، 200-207.
Armstrong, K.L., & Albrecht, K.A. (2008). Effect of plant density on forage yield and quality of intercropped corn and lablab bean. Crop Science, 48(2), 814-822.
Ashoori, N., Abdi, M., Golzardi, F., Ajalli, J., & Ilkaee, M.N. (2021). Forage potential of sorghum-clover intercropping systems in semi-arid conditions. Bragantia, 80, e1421.
Astuti, D., Suhartanto, B., Umami, N., & Irawan, A. (2020). Effect of density between intercropped sorghum and stylosanthes on biomass production and quality under varying NPK fertilizer application rates. Journal of Crop Science and Biotechnology, 23, 197-205.
Bacchi, M., Monti, M., Calvi, A., Lo Presti, E., Pellicanò, A., & Preiti, G. (2021). Forage potential of cereal/legume intercrops: Agronomic performances, yield, quality forage and LER in two harvesting times in a Mediterranean environment. Agronomy, 11(1), p.121.
Baghdadi, A., Golzardi, F., & Hashemi, M. (2023). The use of alternative irrigation and cropping systems in forage production may alleviate the water scarcity in semi-arid regions. Journal of the Science of Food and Agriculture, 103(10), 5050-5060.
Bakhtiyari, F., Zamanian, M., & Golzardi, F. (2020). Effect of mixed intercropping of clover on forage yield and quality. South-Western Journal of Horticulture, Biology and Environment, 11(1), 49-65.
Balazadeh, M., Zamanian, M., Golzardi, F., & Torkashvand, A. M. (2021). Effects of limited irrigation on forage yield, nutritive value and water use efficiency of Persian clover (Trifolium resupinatum) compared to berseem clover (Trifolium alexandrinum). Communications in Soil Science and Plant Analysis, 52(16), 1927-1942.
Carmi, A., Aharoni, Y., Edelstein, M., Umiel, N., Hagiladi, A., Yosef, E., Nikbachat, M., Zenou, A., & Miron, J. (2006). Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology, 131(1-2), 121-133.
Delfani, M., Akbari, M., Vafa, P., MalekMaleki, F., & Masoumi, A. (2022). The effect of plant density and supplementary irrigation on nutritional value of two safflower (Carthamus tincturius L.) forage crops. Communications in Soil Science and Plant Analysis, 53(11), 1355-1378.
Ferraz-Almeida, R., Albuquerque, C.J.B., Camargo, R., Lemes, E.M., Soares de Faria, R., & Quintão Lana, R.M. (2022). Sorghum–grass intercropping systems under varying planting densities in a semi-arid region: Focusing on soil carbon and grain yield in the conservation systems. Agriculture, 12(11), p.1762.
Ghalkhani, A., Golzardi, F., Khazaei, A., Mahrokh, A., Illés, Á., Bojtor, C., Mousavi, S. M. N., & Széles, A. (2023). Irrigation management strategies to enhance forage yield, feed value, and water-use efficiency of sorghum cultivars. Plants, 12(11), 2154.
Heydarzadeh, S., Jalilian, J., Pirzad, A., & Jamei, R. (2023). Impact of bio-fertilizers under supplementary irrigation and rain-fed conditions on some physiological responses and forage quality of smooth vetch (Vicia dasycarpa). Journal of Agricultural Science, 29(3), 777-787.
Heydarzadeh, S., Jalilian, J., Pirzad, A., Jamei, R., & Petrussa, E. (2022). Fodder value and physiological aspects of rainfed smooth vetch affected by biofertilizers and supplementary irrigation in an agri-silviculture system. Agroforest Systms, 96(1), 221-232.
Horrocks, R. D., & Vallentine, J. F. (1999). Harvested Forages. Academic Press, London, UK.
Ibrahim, A. T. I. S., & Acikalin, S. (2020). Yield, quality and competition properties of grass pea and wheat grown as pure and binary mixture in different plant densities. Turkish Journal of Field Crops, 25(1), 18-25.
Jafari, A., Connolly, V., Frolich, A., & Walsh, E. J. (2003). A note on estimation of quality parameters in perennial ryegrass by near infrared reflectance spectroscopy. Irish Journal of Agricultural and Food Research, 42(2), 293-299.
Jahanzad, E., Jorat, M., Moghadam, H., Sadeghpour, A., Chaichi, M. R., & Dashtaki, M. (2013). Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agricultural Water Management, 117, 62-69.
Jalilian, J., Najafabadi, A., & Zardashti, M. R. (2017). Intercropping patterns and different farming systems affect the yield and yield components of safflower and bitter vetch. Journal of Plant Interactions, 12(1), 92-99.
Javanmard, A., Amani Machiani, M., & Eskandari, H. (2019). Evaluation of forage quantity and quality of barley (Hordeum vulgare L.) and pea (Pisum sativum L.) intercropping system in Maragheh rainfed conditions. Journal of Agroecology, 11(2), 435-452. (In Persian).
Mahfouz, H., Megawer, E. A., Maher, A., & Shaaban, A. (2019). Integrated effect of planting dates and irrigation regimes on morpho-physiological response, forage yield and quality, and water use efficiency of clitoria (Clitoria ternatea L.) in arid region. Archives of Agronomy and Soil Science, 66(2), 152-167.
Mu, L., Su, K., Zhou, T., & Yang, H. (2023). Yield performance, land and water use, economic profit of irrigated spring wheat/alfalfa intercropping in the inland arid area of northwestern China. Field Crops Research, 303, 109116.
Nazari, S., Aboutalebian, M.A., & Golzardi, F. (2017). Seed priming improves seedling emergence time, root characteristics and yield of canola in the conditions of late sowing. Agronomy Research, 15(2), 501-514.
Noorbakhshian, S. J. (2013). Effect of planting dates and different rates of seed on forage yield of berseem clover in double cropping system in Shahrekord region. Agronomy Journal (Pajouhesh & Sazandegi), 107, 200-207. (In Persian).
Pourali, S., Aghayari, F., Ardakani, M. R., Paknejad, F., & Golzardi, F. (2023). Benefits from intercropped forage sorghum–red clover under drought stress conditions. Gesunde Pflanzen, 75(5), 1769-1780.
Rad, S. V., Valadabadi, S. A. R., Pouryousef, M., Saifzadeh, S., Zakrin, H. R., & Mastinu, A. (2020). Quantitative and qualitative evaluation of Sorghum bicolor L. under intercropping with legumes and different weed control methods. Horticulturae, 6(4), 78.
Rady, A. M., Attia, M. F., Kholif, A. E., Sallam, S. M., & Vargas-Bello-Pérez, E. (2022). Improving Fodder Yields and Nutritive Value of Some Forage Grasses as Animal Feeds through Intercropping with Egyptian Clover (Trifolium alexandrinum L.). Agronomy, 12(10), p.2589.
Rao, M.R., & Willey, R.W. (1980). Evaluation of yield stability in intercropping: studies on sorghum/Pigeonpea. Experimental Agriculture, 16(2), 105-116.
Rezaei-Chiyaneh, E., Amani Machiani, M., Javanmard, A., Mahdavikia, H., Maggi, F., & Morshedloo, M. R. (2021). Vermicompost application in different intercropping patterns improves the mineral nutrient uptake and essential oil compositions of sweet basil (Ocimum basilicum L.). Journal of Soil Science and Plant Nutrition, 21, 450-466.
Salama, H. S. A. (2019). Yield and nutritive value of maize (Zea mays L.) forage as affected by plant density, sowing date and age at harvest. Italian Journal of Agronomy, 14(2), 114-122.
Soe Htet, M. N., Hai, J. B., Bo, P. T., Gong, X.W., Liu, C. J., Dang, K., Tian, L. X., Soomro, R. N., Aung, K. L., & Feng, B. L. (2021). Evaluation of nutritive values through comparison of forage yield and silage quality of mono-cropped and intercropped maize-soybean harvested at two maturity stages. Agriculture, 11(5), 452.
Umesh, M. R., Angadi, S., Begna, S., & Gowda, P. (2022). Planting density and geometry effect on canopy development, forage yield and nutritive value of sorghum and annual legumes intercropping. Sustainability, 14(8), 4517.
Xu, R., Zhao, H., Liu, G., You, Y., Ma, L., Liu, N., & Zhang, Y. (2021). Effects of nitrogen and maize plant density on forage yield and nitrogen uptake in an alfalfa–silage maize relay intercropping system in the North China Plain. Field Crops Research, 263, 108068.
Xu, R., Zhao, H., You, Y., Wu, R., Liu, G., Sun, Z., & Zhang, Y. (2022). Effects of intercropping, nitrogen fertilization and corn plant density on yield, crude protein accumulation and ensiling characteristics of silage corn interseeded into alfalfa stand. Agriculture, 12(3), 357.
Zamanian, M., Akbari Rad, M., Abbasi, M. R., Mehrani, A., Moghadam, A., Zarifinia, N., Chabook, K., Torabi, M., & Taleb Nejad, A.R. (2012). Alborz-1, a new cultivar of crimson clover suitable of cropping systems based on clover planting. Research Achievements for Field and Horticulture Crops, 1(2), 107-115. (In Persian).
Zamanian, M., Golzardi, F., Mahrokh, A., Azizi, F., Torabi, M., Ghotbi, V., Mofidian, M. A., Rahjoo, V., & Soltani, E. (2023). Meta-analysis of agronomic factors limiting clover forage production in Iran. Journal of Crops Improvement, 25(2), 451-467. (In Persian).