Mina Amani; Saeideh Alizadeh-Salteh; Mohsen Sabzi nojadeh; Mehdi Younessi Hamzekhanlu
Abstract
Objective: Taking advantage of the symbiotic relationship between plants and Trichoderma fungi is one of the ways to reduce water stress in plants. The present study was conducted in order to investigate the effect of Trichoderma fungus on the antioxidant properties of the basil medicinal plant (Ocimum ...
Read More
Objective: Taking advantage of the symbiotic relationship between plants and Trichoderma fungi is one of the ways to reduce water stress in plants. The present study was conducted in order to investigate the effect of Trichoderma fungus on the antioxidant properties of the basil medicinal plant (Ocimum basilicum L.) under water stress conditions.
Methods: This experiment was carried out in the greenhouse of the Department of Horticulture Sciences of Ahar Faculty of Agriculture and Natural Resources and laboratory studies in the basic and general laboratories of Ahar Faculty of Agriculture and Natural Resources (University of Tabriz) in 2019 in a factorial manner based on a randomized complete block design with three repetitions. The treatments included different levels of water deficit stress, including severe stress (25% of field capacity), moderate stress (50% of field capacity), mild stress (75% of field capacity), and no stress (100% of field capacity). Each pot contained a commercial mushroom species Trichoderma harzianum Na-lac with concentrations of 109 and 106 spores per milliliter as the inoculum.
Results: The results showed that the amount of malondialdehyde, catalase and peroxidase, antioxidant activity and total flavonoid increased with the application of dehydration stress. The concentration of 106 spores per milliliter had a better impact on improving the mentioned indicators. Based on this, Trichoderma fungus proves effective when improving the antioxidant status of plants under drought stress and can prevent the effects of oxidative stress in plants by reducing the oxygen free radicals produced.
Conclusion: The results indicated that the use of Trichoderma mushroom in comparison with the control (without inoculation with the mushroom) can be a suitable tool to improve the physiological traits and antioxidant activities in the conditions drought stress.
nastaran hemmati; azim ghasem nezhad; javad fattahi moghaddam; pouneh ebrahimi
Abstract
The present study was done to investigate the correlation between biochemical changes of grafted tree fruits and rootstock fruits in Gorgan university of agricultural science and natural resources in 2012-2013. For this purpose, the antioxidant activity and the total content of phenol and flavonoid ...
Read More
The present study was done to investigate the correlation between biochemical changes of grafted tree fruits and rootstock fruits in Gorgan university of agricultural science and natural resources in 2012-2013. For this purpose, the antioxidant activity and the total content of phenol and flavonoid on four rootstocks such as Yuzu (Citrus junos), Shelmahalleh (Citrus sinensis var. shel mahalleh), Citrumelo (Citrus paradisi X Poncirus trifoliate), Sour orange (Citrus aurantium) and Italian and Salustiana grafted tree were studied in skin and flesh of fruits. This research was done as a factorial experiment based on completely randomized design with three replications. The result showed that the measured parameters were significantly influenced by cultivar, rootstock and tissue. The highest amount of total phenol (21.38 mg/gDM) was recorded in Italian skin on Shelmahalleh rootstock. The most antioxidant activity (85.71 percent) was produced in the skin of Citrumelo rootstock. The maximum content of total flavonoid (0.337 mg/gDM) was observed in the skin of Salustiana on Yuzu rootstock. The investigation indicated that the total phenol accumulation ability of rootstock fruit influences the antioxidant activity of the grafted tree fruits with a positive correlation Although there was significant differences between antioxidant compounds of grafted tree fruits with fruits of their rootstocks, but there was no relationship between them. It seems this was due to a combination of physiological characteristics of each group (grafted or not) of fruits.