Fatemeh Mirzaei; Mohammad Rafieiolhossaini; Nafiseh Rangzan; Mahdi Amirusefi
Abstract
Objective: Quinoa, with its high nutritional value, is highly resistant to a wide range of non-biological stresses. Despite the limited resources and the increasing demand for food products in lands with low or limited fertility, it can be cultivated well and produces a good product.
Methods: This experiment ...
Read More
Objective: Quinoa, with its high nutritional value, is highly resistant to a wide range of non-biological stresses. Despite the limited resources and the increasing demand for food products in lands with low or limited fertility, it can be cultivated well and produces a good product.
Methods: This experiment was conducted with the aim of investigating the simultaneous effect of drought stress and heavy metals on the quinoa plant, in a factorial format in a completely randomized design with 3 replications. The first component involved two levels of soil (contaminated and uncontaminated), and the second factor, three levels of drought stress (100% of field capacity 60% of field capacity, and 30% of field capacity).
Results: Interaction effect of soil type and drought stress was significant on all traits except the fresh weight of shoot and plant height. The lowest amount of fresh and dry weight of roots, dry weight of shoot and weight of thousand seeds was observed in contaminated soil with severe drought stress. Nevertheless, the weight of 1000 quinoa seeds under the influence of moderate drought stress was not significantly different from the condition without drought stress. Examining the simple effects showed that soil contamination with heavy metals caused a decrease of 13.7% in fresh weight of shoot and 30.5% decrease in dry weight of shoot compared to plants grown in uncontaminated soil.
Conclusion: In general, it can be stated that the increase in drought stress has significantly reduced root fresh weight and 1000 seed weight in quinoa, but the percentage and ratio of this reduction in soil contaminated with heavy metals was much higher than that of non-contaminated soil. According to the results of this research, the cultivation of quinoa can be investigated as a promising plant in soils with similar limitations.
Mahdi Amirusefi; Mahmoud Reza Tadayon; Rahim Ebrahimi
Abstract
The present experiment has been conducted as a split plot factorial based on completely randomized block design with three replications in 2018-2019 crop season on a saline farm (with an electrical conductivity of 5.2 dS/m) in Dastgerd area, Isfahan Province. Four levels of irrigation (25%, 50%, 75%, ...
Read More
The present experiment has been conducted as a split plot factorial based on completely randomized block design with three replications in 2018-2019 crop season on a saline farm (with an electrical conductivity of 5.2 dS/m) in Dastgerd area, Isfahan Province. Four levels of irrigation (25%, 50%, 75%, and 100% of FC) compose the main factors and biofertilizer (the control, Nitroxin, Biophosphorus, and their combination) as well as chemical fertilizer in two level of no application and integrated application of nitrogen and phosphorus fertilizers are the sub-factor. Severe drought stress (25% FC irrigation treatment) increase the measured traits (antioxidant enzyme activity including catalase, peroxidase, and superoxide dismutase along with Proline and Malondialdehyde content) in quinoa by about 46%, 52%, 142%, 42%, and 39%, compared to non-stress conditions (100% FC irrigation treatment), respectively. Also, they significantly reduce grain and biological yield in this plant (by about 76% and 49%, respectively). However, at all drought stress levels , the combination of nitroxin and biophosphorus under conditions of simultaneous use of chemical fertilizers of nitrogen and phosphorus shows the maximum effect on moderation of drought stress effects, significantly reducing the activity of antioxidant enzymes and, consequently, increasing yield, compared to other treatments at the same drought level. Overall, the results demonstrate that despite the salinity of the tested soil, quinoa has been able to complete its growth and seed production even under severe drought stress conditions.