moslem heydari; seyed mohsen mousavi nik; nooshin mir
Abstract
Excessive use of chemical fertilizers has caused contamination of soil as well as surface and groundwater resources. For this purpose, an experiment has been conducted to investigate the possibility of reducing surface water pollution with nitrate and also the effect of nitrogen on quantitative and qualitative ...
Read More
Excessive use of chemical fertilizers has caused contamination of soil as well as surface and groundwater resources. For this purpose, an experiment has been conducted to investigate the possibility of reducing surface water pollution with nitrate and also the effect of nitrogen on quantitative and qualitative characteristics of beans as a factorial based on completely randomized design (CRD) with four replications in Hamadan Agricultural and Natural Resources Research Center between 2013 and 2014. The first factor includes four types of nitrogen fertilizers, X1 (zeolite - EN), X2 (zeolite - AcAcEN), X3 (zeolite - HED), X4 (urea fertilizer), and X0 (control sample - no fertilizer use) and the second one involves two bean species, namely red beans (Phaseolus vulgarize L.) of Derakhshan cultivar and genotype 29005 of Cowpea (Vigna unguiculata L.). Applying functionalized zeolite nanofertilizers reduces nitrate leaching from the experimental units (pots). Meanwhile, zeolite X3 fertilizer is capable of reducing nitrate leaching by 48% in comparison with urea fertilizer. The amount of soil nitrogen in pots, containing X3 fertilizer, is 0.115 ppm and, compared to the urea fertilizer treatment, it improves this element’s maintenance in the soil by 30%. Accordingly, X3 fertilizer increases chlorophyll, protein, and grain yield by 44%, 64%, and 56%, respectively, in comparison with the control. In general, the application of functionalized nano zeolites has a beneficial role in reducing nitrate leaching and improving the quantitative and qualitative characteristics of bean plants.