fereshteh darabi; Nosratollah Abbasi; Mohammad Javad Zarea
Abstract
This paper aims at evaluating the effects of putrescine and 24-epibrasinolide on altering the activity of antioxidant enzymes to tolerate drought stress in basil. The plan has been implemented as factorial split plot layout based on a randomized complete block design with three replications in the cropping ...
Read More
This paper aims at evaluating the effects of putrescine and 24-epibrasinolide on altering the activity of antioxidant enzymes to tolerate drought stress in basil. The plan has been implemented as factorial split plot layout based on a randomized complete block design with three replications in the cropping years 2017-2018 and 2018-2019 at the research farm of the Faculty of Agriculture, Ilam University. Experimental treatments include drought stress at three levels (40, 80, and 120 mm evaporation from Class A evaporation pan) as the main plots, putrescine foliar application at three levels (0, 0.5, and 2 (mM) and 24- Epibrassinolid foliar application at three levels (0, 0.5, and 2 μM) as subplots. Results show that the highest amount of proline in 120 mm occurs during the first year of the experiment and the use of putricin (2 mM) and 24-epibrasinolide (0.5 μM) also cause a further increase in proline. The highest amount of catalase has been observed in the 120 mm evaporation treatment and the application of 2 mM putrescine. The interaction of drought stress, putrescine, and 24-epiprasinolide also show that the highest levels of ascorbate peroxidase and superoxide dismutase belong to the treatment of 120 mM where the highest concentrations of putrescine (2 mM) and 24-epibrasinolide (2 μM) is observed. Under optimal irrigation conditions (40 mm), the combined application of lower concentrations of putrescine (0.5 mM) and epibrasinolide (0.5 μM) and under drought stress conditions (80 and 120 mm), higher concentrations of these two substances (2 mM putrescine and 2 μM epibrasinolide) increase the enzyme guaiacol peroxidase. Multiple interactions of year, drought stress, putrescine, and 24-epibrasinolide have had a significant effect on total flavonoids and essential oil percentage of basil. In both experimental years, application of 2 mM putrescine and 2 μM 24-epibrasinolide at all levels of drought stress 120 mm cause a further increase in these two traits which has been greater in the first year than the second one. Concomitant use of 2 mM putrescine and 2 μM epibracinolide due to increased proline synthesis and antioxidant enzymes is the best treatment to reduce the effects of drought stress in basil, indicating a synergistic relation between the two. The substance boosts the growth of basil, increasing the percentage of its essence.
Hamideh Azad; Baratali Fakheri; nafiseh mahdinezhad; Qhasem Parmoon
Abstract
In order to study the effect of foliar application of nano iron chelated on antioxidant enzymes activity and yield of chamomile genotypes under drought stress condition, a factorial experiment based on randomized complete block design with three replications was conducted at the research greenhouse of ...
Read More
In order to study the effect of foliar application of nano iron chelated on antioxidant enzymes activity and yield of chamomile genotypes under drought stress condition, a factorial experiment based on randomized complete block design with three replications was conducted at the research greenhouse of the University of Zabol in 2014. Experimental treatments included drought stress (at 2 levels of control or 90% of field capacity and 70% of field capacity) and nano iron chelate (at 2 levels of control and 2 mg/l) and genotypes, including (Isfahan, Mashhad, Shiraz, Kerman, Arak and Safashahr). The results showed that the drought stress according to the genotype had different effects on antioxidant enzyme activities so that the enzymes activities increased in some of the genotypes and decreased in some of them. Water stress caused to increasing in catalase activity in genotypes of Arak, Kerman and Safashahr, peroxidase and increasing in ascrobats peroxidase activity in genotypes of Isfahan, Mashhad, Arak and Kerman, and increasing in polyphenol oxidase and guaiacol peroxidase in genotypes of Shiraz and Safashahr.The highest the economic yield were observed in Esfahan genotype. Generally, it could be said that stress causes damaging effects on the plant and using of nano-chelate can increase the plant̕ s tolerance to stress and application of Isfahan and Mashhad genotypes are suitable for stress conditions.
Ebrahim Brouki milan; Leyla Hassni; Babak Abdollahi Mandoulakani; Reza Darvishzadeh; Fatemeh Kheradmand; Abbas Hassani
Abstract
A completely randomized design (CRD) with three replications was conducted at greenhouse of Urmia University in 2013 to study the effect of different methyl jasmonate concentrations (0, 0.1 and 0.5 mM) on the activity of enzymes polyphenol oxidase, phenylalanine ammonia lyase, catalase, ascorbate peroxidase, ...
Read More
A completely randomized design (CRD) with three replications was conducted at greenhouse of Urmia University in 2013 to study the effect of different methyl jasmonate concentrations (0, 0.1 and 0.5 mM) on the activity of enzymes polyphenol oxidase, phenylalanine ammonia lyase, catalase, ascorbate peroxidase, guaiacol peroxidase and total protein content in basil. Activity of the enzymes and total protein content was measured at flowering stage 0, 24, 48 and 72 hours after foliar application of methyl jasmonate. Analysis of data was carried out in a split plot in time design which methyl jasmonate concentrations and sampling times were considered as main and sub-plots, respectively. The results of the investigation showed the maximum activity of phenylalanine ammonia lyase and guaiacol peroxidase at concentrations of 0.5 and 0.1 mM, respectively, 48 and 72 hours after spraying. The effect of methyl jasmonate on the activity of polyphenol oxidase, catalase, ascorbate peroxidase and total protein content was significant (P≤0.01). The most activity of the catalase, ascorbate peroxidase and total protein obtained in a concentration of 0.5 mM methyl jasmonate. Significant differences were observed among sampling times after methyl jasmonate spraying for catalase activity which increased 48 and 72 hours after spraying (P≤0.05). Therefore, methyl jasmonate spraying with a concentration of 0.5 mM could increase the activity of the antioxidant enzymes and total protein in basil.