raheleh arabameri; afshin soltani; Ebrahim Zeinali; benyanen torabi
Abstract
Yield gap analysis is a quantitative estimate of possible increase of the capacity to provide food for a specified area. It is an important component for designing strategies to supply food on a scale of regional, national, and global level. In this regard a study has been conducted to determine the ...
Read More
Yield gap analysis is a quantitative estimate of possible increase of the capacity to provide food for a specified area. It is an important component for designing strategies to supply food on a scale of regional, national, and global level. In this regard a study has been conducted to determine the extent and function of chickpea and lentil crop vacancy distribution at Gorgan University of Agricultural Sciences and Natural Resources during 2016-2018. Using SSM-iCrop2 model, the study simulates potential yield in chickpea and lentil producing regions in Iran. For this purpose, it employs the protocol of Atlas Gap Project, called GYGA protocol, to identify climatic zones and identify important meteorological stations, located in chickpea and lentil production areas in the country. After identifying the important stations, the performance potential for the station range is simulated and then the regional results are generalized to the whole country, based on the GYGA protocol. For dryland chickpeas in the country, the values of actual and potential yield as well as yield gap have been 0.43, 1.04, and 0.61 tons per hectare, respectively. In case of rainfed lentils in the country, the values of actual yield and potential along with yield gap have been 0.43, 1.10, and 0.67 tons per hectare, respectively. The present study can be used for better management in low-yield and high-yield areas of the country for these two products.
shahram omidvari; Nader Salamati; Samad Abdi
Abstract
In order to investigate the effect of irrigation regime and biofertilizers on yield and yield components of irrigated wheat, an experiment was conducted in a split-plot layout based on randomized complete block design with three replications at Sarab Changai research station, Khoramabad, during 2014-2015 ...
Read More
In order to investigate the effect of irrigation regime and biofertilizers on yield and yield components of irrigated wheat, an experiment was conducted in a split-plot layout based on randomized complete block design with three replications at Sarab Changai research station, Khoramabad, during 2014-2015 crop year. Irrigation intervals were in two levels including 75 and 150 mm evaporation from A class evaporation pan were allocated to main plots and biological fertilizers were in four levels including Azotobacter, Micorhiza, Azotobacter + Micorhiza and blank (No fertilizer use) were allocated to sub plots. The results showed that the effect of Irrigation intervals, biological fertilizer and their interaction effects on determined characteristics are significant. 75 mm evaporation from A class evaporation pan was superior than the 150 mm evaporation in all traits. In 75 mm evaporation spike length (7%), spike weight (7.7%), grain number in spike(6.7%), Weight of one thousand grains (7.3%), grain yield(7.1%), biological yield(7.4%) were higher than 150 mm evaporation. Azotobacter + Micorhiza fertilizer treatment was superior to other fertilizer treatments. So that In this treatment the spike length was 28.6%, spike weight 48.3%, number of seeds per spike 56.9%, 1000 grain weight 39.8%, grain yield 54.4%, biological yield 51.3% and water use efficiency 55.7% were increased than blank.