donya behruzi; Marjan Diyanat; Eslam Majidi; mohammad Javad Mirhadi; ali shirkhani
Abstract
Drought is one of the most important factors limiting corn production in the world. On the other hand, the use of renewable resources and inputs such as vermicompost is one of the principles of sustainable agriculture. Therefore, in order to investigate the effect of deficit irrigation, chemical fertilizers ...
Read More
Drought is one of the most important factors limiting corn production in the world. On the other hand, the use of renewable resources and inputs such as vermicompost is one of the principles of sustainable agriculture. Therefore, in order to investigate the effect of deficit irrigation, chemical fertilizers and vermicompost an experiment has been performed in the form of split split plots in a randomized complete block design with 3 replications for two years (2017 and 2018) in Kermanshah Agricultural Research and Training Center. Irrigation treatment include optimum, 80% and 60% of water requirement. Chemical fertilizer include 100% and 50% recommended and vermicompost include 0, 2, 4,and 6 ton ha-1 arranged as main plots, sub plots, and sub sub plots, respectively. Results show that leaf area index is decreased from 4.51 to 1.6 from normal irrigation to intense drought stress. The highest yield of fresh forage (82.5 ton ha-1) is obtained in optimal irrigation treatment and combined use of 100% chemical fertilizer and 6 ton ha-1 of vermicompost and the lowest rate (30.1 ton ha-1) is related to 60% water requirement and no use of vermicompost chemical fertilizers. At all irrigation tratments, the percentages of forage protein increase with the use of fertilizers and vermicompost, and the highest percentage of forage protein (10.2%) is obtained in complete irrigation treatment and 100% fertilizer application and 6 ton ha-1 vermicompost. Based on the results in irrigation treatment by 60% of water requirement and application of 50% of chemical fertilizer, application of vermicompost at the rate of six tons per hectare, compared to no application, increases fresh forage by 26.26% and protein by 6.9%.
Fatemeh Ghasemi; Weria Weisany; Marjan Diyanat; Mahmood Moradi
Abstract
The use of densitiy and cultivars that have high competitiveness are effective ways to control weeds in the integrated management system. The present study aims at increasing competitive ability of some dryland chickpea cultivars against weeds under different plant densities. Therefore, an experiment ...
Read More
The use of densitiy and cultivars that have high competitiveness are effective ways to control weeds in the integrated management system. The present study aims at increasing competitive ability of some dryland chickpea cultivars against weeds under different plant densities. Therefore, an experiment has been conducted as a split factorial in a Randomized Complete Block Design with four replications in the research farms of the Kurdistan Agricultural and Natural Resources Research and Education Center, Garizeh Agricultural Research Station, Sanandaj, Iran, during the 2020-2021 growing seasons. Experimental treatments include different plant density (30, 36, and 42 plants.m-2) as main plot, seven cultivars (Azad, Jam, Hashem, ILC482, Pirooz, Kaka, and a local variety), and weed management (no weeding and hand weeding during the whole growing season) as subplots. Results indicate that weeding operations are effective in increasing the number of pod per plant by 35.63%. Also, it is observed that there have beem significant differences among yield and yield components of the studied cultivars. ILC482 and Kaka cultivars have had the highest and lowest number of main branches at 3.82 and 2.58 values, respectively. The highest number of secondary branches obtained at a density of 30 plants.m-2. Furthermore, the highest number of pods per plant registered for Pirooz and Jam cultivars and the lowest number of pods per plant has been 7.98 in Hashem cultivar. The highest grain yield, indices of tolerance and competition and the lowest weed density observed for the Jam cultivar. In all examined cultivars, the number of seeds per square meter, grain yield and ability withstand competition index improve with increasing plant density so that the highest values are achieved at the plant density of 42 plants.m-2.
Maryam Falahatkar Gangi; Weria Weisany; Marjan Diyanat
Abstract
In order to investigate the effect of different mycorrhizal fungai species and drought stress levels on physiological characteristics of chickpea cultivars, a factorial experiment was conducted in a completely randomized design in the greenhouse of Kurdistan Agricultural and Natural Resources Research ...
Read More
In order to investigate the effect of different mycorrhizal fungai species and drought stress levels on physiological characteristics of chickpea cultivars, a factorial experiment was conducted in a completely randomized design in the greenhouse of Kurdistan Agricultural and Natural Resources Research Center in 2020. Its factors include irrigation at three levels (optimal irrigation at field capacity, moderate stress, and severe stress), application of mycorrhizal fungus at four levels (mosseae, Simiglomus hoi, Rhizophagus irregularis, and no inoculation (control)) and chickpea cultivar at two levels (ILC-482 and Pirooz). Results show that irrigation level has had a significant effect on the evaluated traits. Thus, by decreasing the amount of available plant water, both dry weight and chlorophyll content drops. Catalase activity increases under severe stress, compared to moderate stress and lack of drought stress up to 37% and 71.9% in Pirooz cultivar and up to 69.4% and 82.6% in ILC-482 cultivar, respectively. In case of the latter, the highest peroxidase activity is observed in severe stress conditions, which almost doubled compared to non-stress treatment. The activity of peroxidase enzyme is affected by the use of mycorrhizal fungi so that plants inoculated with G. mosseae has had the highest and non-inoculation with mycorrhiza the lowest peroxidase activity. In severe stress, the lowest amount of malondialdehyde has been obtained using G. mosseae. Inoculation of chickpeas with mycorrhizal fungi can be considered as a way to improve growth in non-stress conditions and increase tolerance to drought stress conditions.
Farhad Biuckzadeh; Marjan Diyanat
Abstract
In order to investigate chemical control of weeds in nursery of orange coneflower and moss rose two experiments were conducted in Randomized Complete Block Design (RCBD) with four replications in 2011. Treatments were Per-plant trifluralin (EC48 percent) with and without incorporation with soil at 0.2 ...
Read More
In order to investigate chemical control of weeds in nursery of orange coneflower and moss rose two experiments were conducted in Randomized Complete Block Design (RCBD) with four replications in 2011. Treatments were Per-plant trifluralin (EC48 percent) with and without incorporation with soil at 0.2 and 0.3 ml/m2, Per-emergence and Post-emergence oxyfluorfen (EC24 percent) at 0.2 and 0.3 ml/m2, Pre-plant chlorthal-dimethyl (WP48 percent) at one g/m2, two-times hand weeding, weedy and without weed control. Results showed that the use of all herbicide avoided germination of moss rose, thus chemical control of weeds was not recommended. In orange coneflower, kochia, pigweed, lamb'squarters, purslane (broad-leaf weeds) and monocots were controlled by terifluralin, but poor control of common mallow, velvetleafand venice mallow was achieved. Chlorthal-dimethyl had less efficiency in control of broad-leaf and grass weeds comparing to other herbicides. The best treatment for the control of weeds in the nursery of orange coneflower was trifluralin + hand weeding.