چکیده
به‌منظور بررسی تأثیر دمای کود نیترژن و نش خشکسایی بر رشد و شاخص‌های رشدی در نتایجی از محققین مختلف خاک‌وزی، آزمایش‌هایی در سال ۱۳۹۷ در کردشت انجام شد. در این آزمایش برای کود رهیافت در قابل‌حرش‌دهی کامل نتایج مشابهی داشتند. این آزمایش به‌وسیله کود‌های دارای اقلام در سطح ۳۰ و ۹۰ درصد بیشتر نشان داد که با کود نیترژن در سطح ۹۰ درصد بیشتر نشان داد که با کود نیтр...
صدماتی می‌تواند رشد گیاه را مهار کرد و در نتیجه
تولید محصول را کاهش دهد (Li et al., 2006). در
بررسی Majidjan et al. (2008) علت اصلی کاهش
عملکرد دانه در طی نش شکک، کاهش تعداد دانه در
بلال و وزن صد دانه و دلیل افزایش عملکرد دانه در
تیمارهای کودی نیتروزو، افزایش وزن دانه در بلال و
وزن کل بلال بیان شد. با توجه به اینکه برگ‌های سبز
تبدیل آنتزی تورانت به انرژی شیمیایی را انجام می‌دهند،
شاخص سطح برگ 5 می‌تواند به عنوان یکی از مهم‌ترین
عوامل مؤثر در تولید ماده شکک و در تبیخ عملکرد دانه
موثر بکند (Rizzi et al., 2005). به‌منظور تجزیه و تحلیل
شاخص‌های رشد، اندازه‌گیری دو پارامتر سطح برگ و
وزن شکک 2 از این وسیله سبز و سایر شاخص‌های رشد با
انجام برخی محاسبات حاصل می‌گردد (Kochaki &
Smirdnya, 2000).

در نتیجه یک بررسی در گیاهی در ناحیه‌ی علم تربیت
کشاورزی نشان داد که
بهترین سرعت جذب خلخال ی در نظام خاک‌ورزی
مداوی، کشاورزی و بی‌خاکورزی بتر 135
12/11 و 13/11 کم در متمرین در روز بست می‌آمد.
در حالی که سرعت رشد نسبی و سرعت رشد محصول
۶ در سه نظام خاک‌ورزی مورد طالعه، تفاوت معنی‌داری با
هم نداشتند (Ranjbar et al., 2016). با توجه به اهمیت
خاک‌ورزی خاصیت در ناحیه‌ی خشک و نیمه‌خشک دنیا
به‌ویژه خورشید ایران و همچنین استان خشکی به عنوان یک
تهدید بالقوه بر کشاورزی ما و نیاز مبهم رشد و عملکرد
گیاهی در مصرف کود نیتروژون، پزوهش حاضر
به‌منظور بررسی تأثیر سیستم‌های مختلف خاک‌ورزی،
تنش خشکی و کود نیتروژون بر عملکرد ماده شکک و

5. LAI
6. Dry Matter
7. Net Assimilation Rate
8. Crop Growth Rate

1. مقدمه
درخت (Zea mays L.) سومین غلبه مهم بعد از گندم و
برنج در سرتاسر جهان است. کم‌ترین آب به‌دست کاهش
یارندگی سالانه، آب‌هوای شکک و همچنین فقر مواد
آلی خاک از مهم‌ترین دلایل کاهش تولید در ایران
است (Abad et al., 2017). نظام‌های خاک‌ورزی مرسوم
منجر به کاهش مواد آلی خاک، فعالیت‌های آنزیمی و در
نهايت باعث کاهش کیفیت خاک می‌شوند (Mrabet, 2002).
در مناطق شکک و نیمه‌خشک، مدیریت قاپی
به‌دلیل نقص کلیدی در حفاظت از منابع آب و خاک، نقص
مهمی در افزایش تولید محصولات زراعی دارد (Kumar &
Goh, 2000). شخص انحلاف یک بیوژنیک مستقیم
محصول 1 در بقایای گیاهی موجب تهیه دما و رطوبت
خاک، به‌همراه با پایداری دانه‌دادن، افزایش میزان مواد آلی
و کاهش میزان فرسایش (Hajabbasi & Hemmat, 2000).

خاک (Dabney, 2004) می‌شود. مدیریت نامناسب آبیاری
و نیتروژن به عنوان اساسی ترین عوامل کاهش دهنده
عملکرد درخت در نظر گرفته شده‌اند (Norwood, 2000).
نیتروژن یک جزء اساسی اسیدهای آمینه و اسیدهای
نوترکیب است. در نتیجه، بدون ان‌می‌توان پرورشی‌ها
انزیم‌ها RNA و DNA موردیزی در سلول‌های گیاهی را
برای رشد اولیه، رشد پایدار و عملکرد آن برای حیات
Sinclair & (1998) از سایر باقی‌ها گیاهی، می‌ساخت

Ranjbar et al., 2016). با توجه به اهمیت
خاک‌ورزی خاصیت در ناحیه‌ی خشک و نیمه‌خشک دنیا
به‌ویژه خورشید ایران و همچنین استان خشکی به عنوان یک
تهدید بالقوه بر کشاورزی ما و نیاز مبهم رشد و عملکرد
گیاهی در مصرف کود نیتروژون، پزوهش حاضر
به‌منظور بررسی تأثیر سیستم‌های مختلف خاک‌ورزی،
تنش خشکی و کود نیتروژون بر عملکرد ماده شکک و

1. Conservation Tillage
2. No Tillage
3. Water Stress
4. Net Assimilation
تأثیر روش‌های خاک‌وزنی، کود نیتروژن و نش خشکی بر شاخص‌های رشدی و عملکرد ذرت علف‌های (Zea mays L.)

درصد میزان توسیع‌شده (بودن) جهت برآورد نقطه طرفیت زراعی و نقطه پژمردگی دائم از دستگاه سطح فشاری (مدل 505، آریکا) استفاده شد و میزان رطوبت خاک در انرژی محاسبه شده. بر اساس میزان رطوبت خاک در نقاط محاسبه شده بر طبق منطقه بستریت 25/38 و 12/3 درصد به‌دست آمد. با توجه به توصیه بردازی، میزان مشخصة طاهری خاک از 3/4 گرم بر سانتی‌متر مربع مکعب تعیین شد. برای محاسبه مقدار آب موردباز در هر نوبت آبیاری از رابطه (1) استفاده شد.

\[\text{D}_{N} = \left(\frac{\text{FC}-\text{PWP}}{100} \right) \times \text{Dr}. \]

(Alizadeh, 2004)

ف. رابطه (1) مقدار آب در هر آبیاری \(\text{D}_{N} \) که در آن، FC مقدار وزنی خاک در نقطه طرفیت زراعی، PWP وزنی خاک در نقطه پژمردگی دائم، Dr. فرمول مولکولی، \(\text{mm} \) و (mm) ضرب تخلیه رطوبت خاک (درصد) هستند.

\(\text{D}_{N} \) به‌منظور تشخیص زمان آبیاری از دستگاه طرفیت سنج HD2 (مدل آلمن) استفاده شد. خاک اندامان‌گیری رطوبت خاک تا 30 سانتی‌متر (زاویه ماده) درصد مصرف رشدی آبیاری با استفاده از نواحی بلاستیکی به‌فلکه ناژول داده شد. عامل محاسبه قیمتی خاک در مرحله نشانگر اعمال شد. عامل فرعي کود نیتروژن در سطح مصرف شاده (بدون کاربرد کود) 0/5 و 100 درصد مصرف به‌همراه 1000 کیلوگرم در هکتار یا 20/3 درصد مصرف به‌همراه 2000 کیلوگرم در هکتار بود. مقدار نیتروژن به‌وسیله آنتانال‌های خاک مشخص گردد که منبع آن نیز کود اوره بود. با توجه به توصیه‌های کودی کودهای فسفر (100 کیلوگرم در هکتار) و تناسیم (250 کیلوگرم در هکتار) در زمان قبل از کاشت مصرف شد.

1. Slight water stress
2. Moderate water stress
3. Severe water stress

4. Field capacity
5. Permanent wilting point
6. Pressure plate

4. Field capacity
5. Permanent wilting point
6. Pressure plate
جدول 1. خصوصیات فیزیکی و شیمیایی خاک محل آزمایش

<table>
<thead>
<tr>
<th>شاخص</th>
<th>واحد</th>
<th>زمان قابل دسترس (mg/kg)</th>
<th>نیتروژن (%)</th>
<th>آمیون (%)</th>
<th>بیمایه (pH)</th>
<th>عمق نمونه‌برداری (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوئس 1</td>
<td></td>
<td>145</td>
<td>9/2</td>
<td>9/8</td>
<td>8/7</td>
<td>1/6</td>
</tr>
</tbody>
</table>

عکال کود نیتروژن در سه تاریخ قبل از کاشت مرحله هشت برسک و هنگام ناسط‌سوز به خاک اضافه شدند.

زمین مربوطه قبل از اعمال نیمارنا تحت کاشت جو بود در خاک‌ورزی مرسوم ابتدا زمین توس می‌گردید برگ‌گازی شکم و سپس در مرحله دیسک زده شد و در نهایت برای کاشت‌درخت از کارناده پنومایک استفاده گردید. برای کاشت درخت در روش بخاورورزی، با استفاده از کارناده مخصوص بخاورورزی پنومایک شرکت تراشه‌کناره به کشت مستقیم بذرها در خاک شد (تقسیم ۹۰ درصد بقا در سطح خاک باقی مانده بودند). در داخل هر کرت شش خط کشت ۱۰ متری وجود داشت. فاصله ریف‌های کشت در تریک ورود داشت. با استفاده از کاشت‌درخت در مرحله دولتکه‌ای استفاده شد. تاریخ کشت و بردشک به ترتیب ۲۰ تیرماه و ۱۴ مهرماه ۱۳۹۸ بود.

*Y = a₀ + a₁ \times 4 \times (\exp(-(x-a₂)/a₃))/(1+\exp(-(x-a₂)/a₃))²

(Yin et al., 2003)

*TDM = \frac{a}{(1+\exp(-b(x-c)))}

(Kochaki & Sarmadnya, 2008)

*GRG = \frac{\log(W₂-W₁)}{T₂-T₁}

(Kochaki & Sarmadnya, 2008)

*GGR = \frac{(W₂-W₁)}{Ga(T₂-T₁)}

که در آنها \(a₀\) عرض از مبدأ، \(a₁\) زمان رسیدن به حداکثر سطح برسک، \(a₂\) حداکثر سطح برسک، \(a₃\) نقطه عطف منحنی است که در آن رشد سطح برسک وارد مرحله خلک می‌شود و \(x\) زمان برحسب روز پس از کاشت خشکی بونه، \(W₁\) وزن خشک بونه در طول فصل رشد بونه، \(W₂\) ضرب نشاندهنده نتیجه افزایش معیار مورفروبیی \(G₃\) زمانی که پنجاه درصد حداکثر مقدار وزن خشک بونه اتفاق می‌افتد. RGR سرعت رشد نسبی (گرم/کگرم).
تأثیر روش‌های خاک‌ورزی، کود نیتروژن و نزن خشکی بر شاخص‌های رشدی و عملکرد ذرت علف‌های (Zea mays L.)

شناختن شاخص سطح بذر، اثر متقابل خاک‌ورزی، نزن خشکی و کود نیتروژن بر سرعت رشد محصول و وزن خشک شاخص کل بونه معنی‌دار (جدول ۲).

واژه‌های متفاوت دارای Wc، سرعت شرکت محصول و Wn، وزن خشک بونه در نمونه‌برداری اول (گرم) و Wt، وزن خشک بونه در نمونه‌برداری دوم (گرم) در فرمول Wt: زمان نمونه‌برداری اول (روز) و Wt: زمان نمونه‌برداری دوم (روز) پس از کاشت، هر دو وضعیت آزمایش و GA سطح زمین را نشان می‌دهد.

table

<table>
<thead>
<tr>
<th>شاخص سطح بذر</th>
<th>سرعت رشد محصول (وارژه‌ای)</th>
<th>مقدار نمونه‌برداری</th>
<th>تکرار</th>
<th>درصد نیتروژن اضافه</th>
<th>نزن خشکی</th>
<th>کود نیتروژن</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص سطح بذر</td>
<td>محصول 1 برگ</td>
<td>1114/3/4/9 ns</td>
<td>2/0/0/0 ms</td>
<td>7/6/6/0 ms</td>
<td>1/0/0/0</td>
<td>1/0/0/0</td>
</tr>
<tr>
<td>شاخص سطح بذر</td>
<td>محصول 2 برگ</td>
<td>335/4/7/7 ns</td>
<td>2/2/0/0 ms</td>
<td>7/7/2/1 ms</td>
<td>4/0/0/0</td>
<td>2/0/0/0</td>
</tr>
</tbody>
</table>

جدول ۲. تأثیر جدول تحقیقی و روش‌های نیروز و نزن خشکی در سطح احتمال

نیتروژن در درصد احتمال یکی از ساده کود نیتروژن بر صفت رشد نسبی و اثر متقابل نزن خشکی و کود نیتروژن بر صفت

نتایج و بحث

تأثیر جدول تحقیقی و روش‌های نیروز و نزن خشکی در سطح احتمال یکی از ساده کود نیتروژن بر صفت رشد نسبی و اثر متقابل نزن خشکی و کود نیتروژن بر صفت
اسماعیل افشار، محمد رضا جهانپور، حسین مقدم، مصطفی اوسی

شکل 1. اثر کاربرد تش آبی و کود نیترورزن بر شاخص سطح برگ گرث در مرحله گلدهی. N0، N50 و N100 به ترتیب نشان‌دهنده صفر، 50 و 100 نیاز کودی نیترورزن و نش تش‌شیدی، متوسط و خفیف به ترتیب نشان‌دهنده نش در سطح 0، 60 و 90 درصد نیاز آبی گیاه است. حروف مشابه از نظر آماری اختلاف معنی‌داری ندارند.

شکل 2. اثر کاربرد تش آبی و کود نیترورزن بر روند شاخص سطح برگ گرث در مرحله گلدهی. N0، N50 و N100 به ترتیب نشان‌دهنده صفر، 50 و 100 نیاز کودی نیترورزن W30، W60 و W90 به ترتیب نشان‌دهنده نش در سطح 0، 60 و 90 درصد نیاز آبی گیاه است.

فرآیندهای آب قابل دسترس و هم‌چنین کاربرد کود نیترورزن افزایش یافته، به‌گونه‌ای که تیمار نش خفیف (90) درصد نیاز آبی را، با مقدار 100 درصد کود نیترورزن منجر به حداکثر شاخص سطح برگ (V/3) در 30 روز بعد از کاشت شد. روند کاهشی شاخص سطح برگ از ۸۶ روز بعد از کاشت تا زمان برداشت به دلیل ریزش برگ‌های پایینی گیاه در هم تیمارها مشاهده شد (شکل 2). یکی در مراحل انبازی و رشد، روند شاخص سطح برگ تا ۵۰ روز بعد از کاشت پایین‌تر و از این‌بعد اثر تأثیر اعمال تش خشک‌کننده و هم‌چنین کود نیترورزن، روند شاخص سطح برگ تغییر یافته، به‌گونه‌ای که تش خشک‌کننده شدید و عدم کاربرد کود نیترورزن شبیه آن را تا پایان زمان برداشت (۸۰ روز بعد از کاشت) به‌میزان کمی افزایش داد. روند افزایشی شیب شاخص سطح برگ با افزایش

پژوهشگران کشاورزی
دوره 13 شماره 2 تابستان 1400

240
تأثیر روش‌های خاک‌وزی، کود‌نیتروژن و نش خشکی بر شاخص‌های رشدی و عملکرد ذرت هلونهای (Zea mays L.)

از عوامل مدیریتی بسیار مهم در بهبود رشد گیاه و بهبود فراهمی رشد سری‌نهایی گیاهان کود‌نیتروژن است. افزایش سطح سری‌نهایی به‌عنوان خود می‌تواند به فراهمی نفوذ منجر به افزایش ظرفیت فتوسنتزی برگ می‌شود که در این صورت برگ افزایش می‌یابد. افزایش شاخص سطح برگ به‌عنوان افزایش کاربرد کود‌نیتروژن (2006) (Patel et al., 2018) و فراهمی آب‌میزان گیاه (2018) از گزینه‌های است.

3.3 سرعت رشد محصول

در مرحله گل‌دهی بیشترین مقدار این شاخص (341/10) گرم بر مترمیکر در روز، از تیمار نیاز آبی خفیف بهره‌برداری کود نیتروژن 100 درصد در تیمار خاکوزی مرسوم حاصل شد (شکل 3). در تیمار خاکوزی حفاظتی و نش خشکی شدید به‌همراه عدم کاربرد کود نیتروژن، کمترین مقدار سرعت رشد محصول (69/11 گرم بر مترمیکر در روز) به‌دست آمده. به‌طور گیاهی در نش خشکی خفیف و نش شکسته متوسط (60 درصد نیاز آبی)، تیمار خاکوزی مرسوم در هر سه تیمار کود نیتروژن اعمال شده نسبت به خاکوزی حفاظتی برتری نشان داد. با کاهش نش خشکی از سطح شدید (70 درصد نیاز آبی) به سطح متوسط و از سطح متوسط به سطح خفیف، شاخص افزایش سرعت رشد محصول در طی فصل رشد، در هردو سیستم خاکوزی مرسوم و خاکوزی حفاظتی بیشتر شد (شکل 4). به‌طور که در 37 روز پس از کاشت در شرایط مرسوم و شرایط حفاظتی بهترین مقادیر 47/20 و 47/89 گرم بر مترمیکر در روز حاصل شد. با تغییر در سطح نیتروژن از صفر به‌طور متوسط و خفیف در دریافت نیاز کودی گیاهان در تیمار نیاز آبی متوسط و خفیف، درصد افزایش سرعت رشد محصول در شرایط خاکوزی نسبت به شرایط مرسوم افزایش یافت (شکل 5)
اشاعری افشاری، محمد رضا چهارموز، حسین مقدم، مصطفی امیری

شکل 3. اثر خاکورزی. تنش آب و کود نیتروژن بر سرعت رشد محصول در تنش مرحله گل‌دهی. N0، N50 و N100 به ترتیب نشان‌دهنده صفر، ۵۰ و ۱۰۰ تانز کودی نیتروژن و تنش شدید، متوسط و خفیف به ترتیب نشان‌دهنده تنش در سطح ۳۰ و ۹۰ درصد ناز آبی یا بیش. حروف مشابه از لحاظ آماری اختلاف معنی‌داری ندارند.

مشکل ۴. اثر کاربرد خاکورزی. تنش آب و کود نیتروژن بر روند سرعت رشد محصول در تنش مرحله گل‌دهی. N0، N50 و N100 به ترتیب نشان‌دهنده صفر، ۵۰ و ۱۰۰ تانز کودی نیتروژن و W30 و W60 و W90 به ترتیب نشان‌دهنده تنش در سطح ۳۰ و ۹۰ درصد ناز آبی یا بیش است (شکل ال. و پ. به ترتیب، خاکورزی حفاظتی و مسوم).
تأثیر روش‌های خاکورزی، کود نیتروژن و تنش خشکی بر شاخه‌های رشدی و عملکرد ذرت علف‌های (Zea mays L.)

شکل ۵. اثر کاربرد کود نیتروژن بر سرعت رشد نسبی ذرت در مرحله گل‌دهی N۰، N۵۰ و N۱۰۰ به ترتیب نشان دهنده صفر، ۵۰ و ۱۰۰ نیاز کودی نیتروژن گیاه است. حروف مشابه از لحاظ آماری اختلاف معنی‌داری ندارند.

شکل ۶. اثر کاربرد کود نیتروژن بر روند سرعت رشد نسبی ذرت.

با افزایش سن گیاه بهدلیل فرارگرفتن برگ‌های اولیه در سایه و همچنین افزایش سن آنها، فعالیتهای فتوسنتزی کاهش یافته که این امر منجر به کاهش سرعت رشد نسبی در طی فصل رشد خواهد شد (Tarigh Islam et al., 2012).

تأثیر تنش خشکی بر فعالیتهای فتوسنتزی گیاه نامطلوبی خواهد داشت و این اثر با وجود کمبود نیتروژن در گیاه تشکیل خواهد شد که نتیجه آن کاهش سطح برگ و همچنین سرعت رشد نسبی در گیاه خواهد شد. افزایش شاخص سرعت رشد نسبی با افزایش سطح کود نیتروژن به سپر بهبود فعالیتهای فتوسنتزی گیاه و افزایش تولید ماده خشک بیان شده است (Mohammadi et al., 2015).

بی‌فرزندی کشاورزی
دوره ۳ شماره ۲ نیاوران ۱۴۰۰ ۲۴۳
نمونه‌ای از اقتصاد و چهارموز، حسین مقدم، مصطفی اربی

شکل ۷ اثر کاربرد نیترات نیتروژن بر وزن خشک محصول ذرت در مرحله گل‌دهی. N۰، N۵۰ و N۱۰۰ به‌ترتیب نشان‌دهنده ۱۰۰ و ۲۰۰ و ۳۰۰ نیترات نیتروژن و نشان‌دهنده نش در سطح ۶۰ و ۹۰ درصد نیاز آبی گیاه است. حروف مشابه از نظر آماری اختلاف معناداری ندارند.

شکل ۸ اثر کاربرد خاکوروزی، نشان‌دهنده ۱۰۰ و ۲۰۰ و ۳۰۰ نیترات نیتروژن و نشان‌دهنده W۳۰ و W۶۰ و W۹۰ به‌ترتیب نشان‌دهنده صفر، ۵۰ و ۱۰۰ درصد نیاز کود نیتروژن و W۳۰ و W۶۰ و W۹۰ به‌ترتیب نشان‌دهنده نش در سطح ۶۰ و ۹۰ درصد نیاز آبی گیاه است. (شکل اف و ب، به‌ترتیب، خاکوروزی مرسوم و حفاظتی).

در تیمار خاکوروزی مرسوم و حفاظتی با اعمال نشن خشک محصول ذرت برای اولین بار در سطح ۸۰ و ۹۰ نیترات نیتروژن در زمان برداشت (۷۰ روز پس از کاشت) به‌ترتیب ۱۹۷۱/۵/۱ و ۱۷۹/۵/۱ گرم در متر مربع، ماده خشک حاصل شد.

برای کاربرد یک‌باره

دوره ۲۳ شماره ۲ تابستان ۱۴۰۰
تأثیر روشهای کاکوروزی کود بیوتورنوز و نشش خشکی بر شاخه‌های رشدی و عملکرد ذرت علفهای (Zea mays L.)

6. تغییر منافع

هجیز که تغییر منافع توسط نویسنده‌گان وجود دارد.

7. منابع

نتیجه‌گیری

با توجه به اینکه نشش خشکی، در شرایط نشش خشکی خفیف (90 درصد تأثیر ایبی) افزایش و عملکرد معادل 13/42 درصد نسبت به شرایط مزمن داشته است، احتمالاً محدودیت در نوع عمق ریشه و متعاقب آن کاهش در جدی عناصر غلیظ را می‌توان دلیل آن تأثیر نشان دهد. در نشش مزمن زمانی که گیاه در معرض نشش خشکی شدید قرار داشت، کاهش 100 درصد کود بیوتورنوز موردنیاز یاده‌ای تأثیر ناملویژی بر وزن خشک بوته ذرت داشت، بنابراین مدیریت مصرف بیوتورنوز تحت شرایط نشش خشکی با استفایی منظم فراگیر جریه. به‌طور کلی می‌توان تأثیر گرفت که خاک‌های حفاظی در سال‌های اولیه تأثیر مثبت خود را و عملکرد نخواهد گزارش کرده‌است. اما با توجه به اینکه ایران در کمیت خشک و به‌خصوص دنیا قرار دارد و اکثر زمین‌های زراعی آن کم‌مواد آلی مواجه است، همچنین خاک‌های حفاظی با فرآیندهای مطلوب بیوتورنوز می‌توانند در درازمدت موجب بهبود شرایط فیزیکی و شیمیایی خاک شود و سبب بهبود و افزایش عملکرد شود.

5. نتیجه‌گیری

از کارکنان مزرعه آموشته و پژوهشی پرده‌برداری و مطالعه تأثیر تنوع تهیه کننده باعث انجام این پژوهش، تامل و قدامآمده‌ی می‌گردد.

