Zeinab Rafie-rad; Ahmad Golchin; Yahya Tajvar; Javad Fatahi-moghadam
Abstract
Considering the limited water resources in Iran, utilization of modern methods of water conservation and preservation, such as the application of superabsorbent polymers in the soil, is one of the confront approaches of water deficit. For this purpose, in order to investigate the effect of superabsorbent ...
Read More
Considering the limited water resources in Iran, utilization of modern methods of water conservation and preservation, such as the application of superabsorbent polymers in the soil, is one of the confront approaches of water deficit. For this purpose, in order to investigate the effect of superabsorbent on vegetative and reproductive growth of Page Mandarin in drought stress condition, a factorial experiment bases on the completely randomized design with three replications was conducted in 2016 at the Citrus and Subtropical Fruits Research Center of Ramsar. Factors were consisted of three levels of water stress (100, 75 and 50% of field capacity) and superabsorbent (0, 0.25 and 0.5% wt). The results showed that by increasing of water stress, amounts of electrolyte leakage, proline, fruit cracking and titratable acidity were increased. As well as 50% of field capacity level, 0.5% superabsorbent application was caused significantly increase leaf relative water content, total chlorophyll content, leaf water potential 60%, 15%, 23% and 87.5% and decrease electrolyte leakage and total soluble solids 65% and 22% respectively, compared with condition of treatment without applying superabsorbent. So, it seems that superabsorbent can increase the plant tolerance in counteracting moisture stress by maintaining unusable water.
Seyed marziyeh Hosseini valashkolaee; Yahya Tajvar; Masoud Azadbakht; Zeinab Rafie-rad
Abstract
Low temperature stress is one of the most important abiotic environmental stresses that affects the growth and yield of ornamental plants. In order to investigate of some physiological and biochemical indices of four varieties of ornamental Citrus used in urban landscapes under low temperature stress ...
Read More
Low temperature stress is one of the most important abiotic environmental stresses that affects the growth and yield of ornamental plants. In order to investigate of some physiological and biochemical indices of four varieties of ornamental Citrus used in urban landscapes under low temperature stress conditions, a factorial experiment in a completely randomized design with three replications was conducted in the Citrus and Subtropical Fruits Research Center of Ramsar in 2015. Treatments were included the temperature with four levels (3, 0, -3 and -6˚C) and four varieties of ornamental Citrus including (Kumquat, Fingered citron, Calamondin and Limequat). Results showed that amounts of electrolyte leakage, water soaking, prolin content, antioxidant capacity, lipid peroxidation and superoxide dismutase activity were increased significantly by reducing of temperature, while chlorophyll and total chlorophyll contents were decreased. Accordingly, the lowest leaf water soaking (20.92%) and electrolyte leakage (30.81%) amount, which are destructive indices, were showed in Kamquate. Total chlorophyll amount (2.21 mg/gFW), antioxidant capacity (60.61%) and superoxide dismutase activity (26.53 IU/gFW), that are tolerability indices, were more relevant at Kamquate. In general, Kumquat could tolerate the freezing stress up to -3°C by increasing of some indices such as proline, soluble sugars, antioxidant capacity and superoxide dismutase activity.