Amir Mizani; jafar masoud sinaki; Shahram Rezvan; Mohammad Abedini-Esfahlani; Ali Damavandi
Abstract
This experiment works on the physiological, growth, and yield responses of sesame to the application of potassium nano-fertilizers, chitosan, and fulvic acid under drought stress in Semnan Agricultural and Natural Resources Research Center as a factorial split-plot based on randomized complete block ...
Read More
This experiment works on the physiological, growth, and yield responses of sesame to the application of potassium nano-fertilizers, chitosan, and fulvic acid under drought stress in Semnan Agricultural and Natural Resources Research Center as a factorial split-plot based on randomized complete block design with three replications in 2019. The experimental treatments include drought as the main plot (normal irrigation, irrigation cut offin 70 and 60 BBCH as moderate, and severe stress, respectively) and potassium nano-fertilizer (0, 1.5, and 2.5 per thousand) and foliar application (control, chitosan, fulvic acid, and 50% of chitosan+ fulvic acid) as sub-plots.Application of potassium nano-fertilizer under normal and stress conditions significantly cuts chlorophyll b and total, leaf area index, number of capsules, 1000-seed weight, and oil percentage.The highest grain yield belongs to the application of 1.5 and 2.5 per thousand nano fertilizers, using fulvic acid alone or in combination with 50% chitosan (2516, 2277.5, 2506.6, and 2313.2 kg/ha, respectively). The highest oil content has been in 1.5 and 2.5 per thousand nano fertilizer application under normal irrigation, which has increased 13.2% and 15.4%, respectively. Foliar application of fulvic acid with nano potassium fertilizer (1.5 per thousand) under severe drought stress show the highest activity of antioxidant enzymes catalase, peroxidase, ascorbate peroxidase, and superoxide dismutase. In general, the results show that the application of 1.5 per thousand nano potassium fertilizer and combined foliar application of chitosan and fulvic acid under severe drought by improving physiological traits, manage to modify the adverse effects of drought, increasing growth, yield, and quality indices of sesame.
jaber khordadi Varamin; Farzad Fanoodi; jafar masoud sinaki; Shahram rezvan; Ali Damavandi
Abstract
To investigate the physiological responses of sesame cultivars to the application of nano magnesium and chitosan biopolymer under different irrigation regimes, a split factorial based on randomized complete block design has been conducted with three replicates between 2017 and 2018. The irrigation cut-off, ...
Read More
To investigate the physiological responses of sesame cultivars to the application of nano magnesium and chitosan biopolymer under different irrigation regimes, a split factorial based on randomized complete block design has been conducted with three replicates between 2017 and 2018. The irrigation cut-off, based on BBCH scale, has served as the main factor (normal irrigation, irrigation up to 50% flowering, and seed ripening), with the sub factors including Oltan and Dashtestan-2 sesame cultivars, and nano magnesium (application and non-application) and chitosan (control, 4.8, and 6.4 g.L-1). The highest mean grain yield belongs to the application of 6.4 g.L-1 chitosan under normal irrigation with an average of 1235.1 kg.ha-1. Also, the highest total chlorophyll content is observed in Dashtestan-2 genotype under normal irrigation with a mean of 24.7 mg.g-1 FW and the lowest mean have been obtained in both genotypes under irrigation up to 65 BBCH with a mean of 17.21 and 17.46 mg.g-1 FW, respectively. Application of nano fertilizer in Oltan genotype under irrigation up to 65 BBCH increases the catalase activity by 41.11%, compared to the control treatment. The highest activity of ascorbate peroxidase has been achieved when not applying chitosan under irrigation conditions up to 65 BBCH. It has risen by 55.06%, compared to the control treatment. In general, the results show that irrigation up to 65 BBCH reduces grain yield, in turn alleviated by the negative effects of stress on magnesium and chitosan nanoparticles (9.93% and 27.46%, respectively). Based on the regression analysis results, four traits, namely chlorophyll b, total chlorophyll, proline, and catalase, enter the model that explains 42.11% of the total grain yield variations. Results of simple correlation between traits and regression analysis indicate the indirect effects of physiological traits on grain yield and among the studied parameters, photosynthetic pigments has been of high account in stress conditions.
Niki Ayoubizadeh; Ghanbar Laei; Majid Amini dehaghi; jafar masoud sinaki; Shahram Rezvan Bidokhti
Abstract
Evaluation the effect of drought stress and foliar nutrition of iron nano-chelate and fulvic acid on grain yield and fatty acids composition in seed oil of two sesame cultivars was conducted during a factorial split-plot experiment based on randomized complete block design with three replicates in 2017 ...
Read More
Evaluation the effect of drought stress and foliar nutrition of iron nano-chelate and fulvic acid on grain yield and fatty acids composition in seed oil of two sesame cultivars was conducted during a factorial split-plot experiment based on randomized complete block design with three replicates in 2017 in the Research Farm Shahed University of Tehran. The experimental factors included drought stress in three levels: full irrigation as control, irrigation up to 50% seed ripping, and flowering, as well as four treatments of foliar nutrition by iron nano-chelate and fulvic acid in Dashtestan and Halil cultivars. The results showed that the drought stress reduced grain yield and also, seed oil content. The highest grain yield was observed in full irrigation (2303.3 kg/ha) and the co-application of iron nano-chelate and fulvic acid (2246.4 kg/ha). Halil cultivar had the highest mean of the total number of capsules (81.19), number of seeds per plant (4786.1), 1000-grain weight (3.21 g), grain yield (2172.7 kg/ha), and biological yield (13534.6 kg/ha) in compared with Dashtestan. The highest oil and protein yield were observed in full irrigation and irrigation up to 50% seed ripping. Irrigation cut off at 50% flowering and seed ripping had the highest oleic and linoleic fatty acids compared to the control treatment, but the highest palmitic and stearic fatty acids were obtained in full irrigation treatment (10.86 and 10.73%, respectively). Halil and Dashtestan cultivars had the highest unsaturated and saturated fatty acids, respectively.
Akram Mahdavi; Jafar Masoud Sinaki; Majid Amini dehaghi; Shahram Rezvan; Ali Damavandi
Abstract
In order to evaluate the effects of chemical, biological and nano fertilizers on the yield and quality traits (oil and protein) of sesame seeds under different irrigation regimes an experiment was conducted as a split-plot factorial based on completely randomized blocks design with three replications ...
Read More
In order to evaluate the effects of chemical, biological and nano fertilizers on the yield and quality traits (oil and protein) of sesame seeds under different irrigation regimes an experiment was conducted as a split-plot factorial based on completely randomized blocks design with three replications at Shahed University during 2015-2016 growing seasons. Irrigation withholding levels (full irrigation (control) and irrigation withholding at 65 and 75 BBCH (codes of phonological stages that are equivalent to 50% of flowering and seed ripening respectively) were assigned as main plot and different nitrogen combinations (nitroxin, urea, and a mix of 50% nitroxin plus urea), various combinations of potassium (not used, nano-potassium foliar application (2 per thousand), irrigated use of potassium dioxide (2 L ha−1) and soil application of nano-potassium (2 kg ha−1) were allocated in the subplots. The highest number of per-plant capsules (19.26 numbers) was observed with irrigation up to 50% seed ripening and the use of urea together with the potassium nano chelate foliar application. The greatest grain yield and protein content and yield were obtained in irrigation up to 50% seed ripening in the absence of potassium fertilizer and nitroxin usage (1340.5, 276.53 kg ha−1 and 5-20%, respectively). The oil yield was utmost in irrigation up to 50% flowering and foliar application of potassium nano chelate together with the mixed system of 50% urea fertilizer plus nitroxin with average values of 47.96% and 550.46 kg ha−1, respectively. The use of nitroxin as a nano-bio-fertilizer and foliar application of chelated nano potassium in irrigation withholding conditions up to 50% grain aggregation resulted in increased grain yield (approx. 15% compared to the control) as well as improved quality of sesame seeds.